ON NUMERICAL RANGE AND NUMERICAL RADIUS OF CONVEX FUNCTION OPERATORS

被引:3
作者
Zaiz, Khaoula [1 ]
Mansour, Abdelouahab [1 ]
机构
[1] Univ El Oued, Dept Math, Operators Theory & PDE Fdn & Applicat Lab, POB 789, El Oued 39000, Algeria
来源
KOREAN JOURNAL OF MATHEMATICS | 2019年 / 27卷 / 04期
关键词
Numerical range; numerical radius; convex operator function; self-adjoint operator; INEQUALITIES;
D O I
10.11568/kjm.2019.27.4.879
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove some interesting inclusions concerning the numerical range of some operators and the numerical range of theirs ranges with a convex function. Further, we prove some inequalities for the numerical radius. These inclusions and inequalities are based on some classical convexity inequalities for non-negative real numbers and some operator inequalities.
引用
收藏
页码:879 / 898
页数:20
相关论文
共 15 条
[1]  
Alrimawi Fadi, 2018, LINEAR MULTILINEAR A, P1
[2]   NUMERICAL RANGE OF A PRODUCT .2. [J].
BOULDIN, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1971, 33 (01) :212-&
[3]   Hermite-Hadamard's type inequalities for convex functions of selfadjoint operators in Hilbert spaces [J].
Dragomir, S. S. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (05) :1503-1515
[4]  
Dragomir SS, 2013, SPRINGERBRIEF MATH, P1, DOI 10.1007/978-3-319-01448-7
[5]   UNITARILY-INVARIANT OPERATOR NORMS [J].
FONG, CK ;
HOLBROOK, JAR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1983, 35 (02) :274-299
[6]  
Gustafson KE, 1997, NUMERICAL RANGE
[7]  
Halmos PR, 1982, HILBERT SPACE PROBLE
[8]   JENSEN INEQUALITY FOR OPERATORS AND LOWNER THEOREM [J].
HANSEN, F ;
PEDERSEN, GK .
MATHEMATISCHE ANNALEN, 1982, 258 (03) :229-241
[9]  
Hiai F., 2010, Interdiscip. Inf. Sci, V16, P139, DOI DOI 10.4036/IIS.2010.139
[10]  
HOLBROOK JA, 1969, J REINE ANGEW MATH, V237, P166