Controlling resonant tunneling in graphene via Fermi velocity engineering

被引:29
作者
Lima, Jonas R. F. [1 ]
Pereira, Luiz Felipe C. [2 ]
Bezerra, C. G. [2 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Fis, BR-52171900 Recife, PE, Brazil
[2] Univ Fed Rio Grande do Norte, Dept Fis Teor & Expt, BR-59078970 Natal, RN, Brazil
关键词
NEGATIVE TRANSCONDUCTANCE; EPITAXIAL GRAPHENE; TRANSISTOR; SUPERLATTICES; CONDUCTANCE; POTENTIALS; BASE; GAPS;
D O I
10.1063/1.4953865
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigate the resonant tunneling in a single layer graphene superlattice with modulated energy gap and Fermi velocity via an effective Dirac-like Hamiltonian. We calculate the transmission coefficient with the transfer matrix method and analyze the effect of a Fermi velocity modulation on the electronic transmission, in the case of normal and oblique incidence. We find it is possible to manipulate the electronic transmission in graphene by Fermi velocity engineering, and show that it is possible to tune the transmitivity from 0 to 1. We also analyze how a Fermi velocity modulation influences the total conductance and the Fano factor. Our results are relevant for the development of novel graphene-based electronic devices. Published by AIP Publishing.
引用
收藏
页数:7
相关论文
共 55 条
[11]   Control over band structure and tunneling in bilayer graphene induced by velocity engineering [J].
Cheraghchi, Hosein ;
Adinehvand, Fatemeh .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (01)
[12]   Theory of resonant tunneling in bilayer-graphene/hexagonal-boron-nitride heterostructures [J].
de la Barrera, Sergio C. ;
Feenstra, Randall M. .
APPLIED PHYSICS LETTERS, 2015, 106 (09)
[13]   NEW TRANSPORT PHENOMENON IN A SEMICONDUCTOR SUPERLATTICE [J].
ESAKI, L ;
CHANG, LL .
PHYSICAL REVIEW LETTERS, 1974, 33 (08) :495-498
[14]   Conductance of graphene superlattices with correlated disorder in velocity profiles [J].
Esmailpour, Ayoub ;
Meshkin, Hamed ;
Asgari, Reza .
SOLID STATE COMMUNICATIONS, 2012, 152 (20) :1896-1901
[15]   Gate-Tunable Resonant Tunneling in Double Bilayer Graphene Heterostructures [J].
Fallahazad, Babak ;
Lee, Kayoung ;
Kang, Sangwoo ;
Xue, Jiamin ;
Larentis, Stefano ;
Corbet, Christopher ;
Kim, Kyounghwan ;
Movva, Hema C. P. ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Register, Leonard F. ;
Banerjee, Sanjay K. ;
Tutuc, Emanuel .
NANO LETTERS, 2015, 15 (01) :428-433
[16]   Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators [J].
Gaskell, J. ;
Eaves, L. ;
Novoselov, K. S. ;
Mishchenko, A. ;
Geim, A. K. ;
Fromhold, T. M. ;
Greenaway, M. T. .
APPLIED PHYSICS LETTERS, 2015, 107 (10)
[17]   Growth and electronic structure of boron-doped graphene [J].
Gebhardt, J. ;
Koch, R. J. ;
Zhao, W. ;
Hoefert, O. ;
Gotterbarm, K. ;
Mammadov, S. ;
Papp, C. ;
Goerling, A. ;
Steinrueck, H. -P. ;
Seyller, Th. .
PHYSICAL REVIEW B, 2013, 87 (15)
[18]  
Giovannetti G, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.073103
[19]   MONOLITHIC INTEGRATION OF A RESONANT TUNNELING DIODE AND A QUANTUM-WELL SEMICONDUCTOR-LASER [J].
GRAVE, I ;
KAN, SC ;
GRIFFEL, G ;
WU, SW ;
SAAR, A ;
YARIV, A .
APPLIED PHYSICS LETTERS, 1991, 58 (02) :110-112
[20]  
Greenaway MT, 2015, NAT PHYS, V11, P1057, DOI [10.1038/nphys3507, 10.1038/NPHYS3507]