Controlling resonant tunneling in graphene via Fermi velocity engineering

被引:29
作者
Lima, Jonas R. F. [1 ]
Pereira, Luiz Felipe C. [2 ]
Bezerra, C. G. [2 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Fis, BR-52171900 Recife, PE, Brazil
[2] Univ Fed Rio Grande do Norte, Dept Fis Teor & Expt, BR-59078970 Natal, RN, Brazil
关键词
NEGATIVE TRANSCONDUCTANCE; EPITAXIAL GRAPHENE; TRANSISTOR; SUPERLATTICES; CONDUCTANCE; POTENTIALS; BASE; GAPS;
D O I
10.1063/1.4953865
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigate the resonant tunneling in a single layer graphene superlattice with modulated energy gap and Fermi velocity via an effective Dirac-like Hamiltonian. We calculate the transmission coefficient with the transfer matrix method and analyze the effect of a Fermi velocity modulation on the electronic transmission, in the case of normal and oblique incidence. We find it is possible to manipulate the electronic transmission in graphene by Fermi velocity engineering, and show that it is possible to tune the transmitivity from 0 to 1. We also analyze how a Fermi velocity modulation influences the total conductance and the Fano factor. Our results are relevant for the development of novel graphene-based electronic devices. Published by AIP Publishing.
引用
收藏
页数:7
相关论文
共 55 条
[1]   Klein paradox and resonant tunneling in a graphene superlattice [J].
Bai, Chunxu ;
Zhang, Xiangdong .
PHYSICAL REVIEW B, 2007, 76 (07)
[2]   NEGATIVE TRANSCONDUCTANCE VIA GATING OF THE QUANTUM WELL SUBBANDS IN A RESONANT TUNNELING TRANSISTOR [J].
BELTRAM, F ;
CAPASSO, F ;
LURYI, S ;
CHU, SNG ;
CHO, AY ;
SIVCO, DL .
APPLIED PHYSICS LETTERS, 1988, 53 (03) :219-221
[3]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[4]   INVERTED BASE-COLLECTOR TUNNEL TRANSISTORS [J].
BONNEFOI, AR ;
CHOW, DH ;
MCGILL, TC .
APPLIED PHYSICS LETTERS, 1985, 47 (08) :888-890
[5]   NEGATIVE TRANSCONDUCTANCE RESONANT TUNNELING FIELD-EFFECT TRANSISTOR [J].
CAPASSO, F ;
SEN, S ;
CHO, AY .
APPLIED PHYSICS LETTERS, 1987, 51 (07) :526-528
[6]   RESONANT TUNNELING TRANSISTOR WITH QUANTUM WELL BASE AND HIGH-ENERGY INJECTION - A NEW NEGATIVE DIFFERENTIAL RESISTANCE DEVICE [J].
CAPASSO, F ;
KIEHL, RA .
JOURNAL OF APPLIED PHYSICS, 1985, 58 (03) :1366-1368
[7]   MULTIPLE NEGATIVE TRANSCONDUCTANCE AND DIFFERENTIAL CONDUCTANCE IN A BIPOLAR-TRANSISTOR BY SEQUENTIAL QUENCHING OF RESONANT TUNNELING [J].
CAPASSO, F ;
SEN, S ;
CHO, AY ;
SIVCO, DL .
APPLIED PHYSICS LETTERS, 1988, 53 (12) :1056-1058
[8]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[9]   RESONANT TUNNELING IN SEMICONDUCTOR DOUBLE BARRIERS [J].
CHANG, LL ;
ESAKI, L ;
TSU, R .
APPLIED PHYSICS LETTERS, 1974, 24 (12) :593-595
[10]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232