Analogues of the Hurwitz Formulas for Level 2 Eisenstein Series

被引:6
作者
Tsumura, Hirofumi [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Tokyo 1920397, Japan
基金
日本学术振兴会;
关键词
Eisenstein series; Hurwitz numbers; hyperbolic functions; Lemniscate constant; Riemann zeta-function;
D O I
10.1007/s00025-010-0058-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider certain double series of Eisenstein type involving hyperbolic functions, which can be regarded as analogues of the level 2 Eisenstein series. We prove some evaluation formulas for these series at positive integers which are analogues of both the Hurwitz formulas for the level 2 Eisenstein series and the classical results given by Cauchy, Lerch, Mellin and Ramanujan.
引用
收藏
页码:365 / 378
页数:14
相关论文
共 50 条
  • [21] On a Ramanujan’s Eisenstein series identity of level fifteen
    E N Bhuvan
    K R Vasuki
    Proceedings - Mathematical Sciences, 2019, 129
  • [22] Ramanujan's Eisenstein series of level 7 and 14
    Vasuki, K. R.
    Veeresha, R. G.
    JOURNAL OF NUMBER THEORY, 2016, 159 : 59 - 75
  • [23] On a Ramanujan's Eisenstein series identity of level fifteen
    Bhuvan, E. N.
    Vasuki, K. R.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (04):
  • [24] Double Eisenstein series and modular forms of level 4
    Kina, Katsumi
    RAMANUJAN JOURNAL, 2024, 65 (04) : 1651 - 1696
  • [25] Eisenstein series associated with Γ0(2)
    Heekyoung Hahn
    The Ramanujan Journal, 2008, 15 : 235 - 257
  • [26] Eisenstein series associated with Γ0(2)
    Hahn, Heekyoung
    RAMANUJAN JOURNAL, 2008, 15 (02) : 235 - 257
  • [27] EVALUATION OF CERTAIN CLASSES OF EISENSTEIN-TYPE SERIES
    Tsumura, Hirofumi
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (02) : 239 - 247
  • [28] Eisenstein series modulo p2
    Ahlgren, Scott
    Hanson, Michael
    Raum, Martin
    Richter, Olav K.
    FORUM MATHEMATICUM, 2025,
  • [29] Equidistribution of Eisenstein series on geodesic segments
    Young, Matthew P.
    ADVANCES IN MATHEMATICS, 2018, 340 : 1166 - 1218
  • [30] Eisenstein series of level 6 and level 10 with their applications to theta function identities of Ramanujan
    Shankar, A. I. Vijaya
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2022, 28 (03) : 581 - 588