The role of iron and 2-oxoglutarate oxygenases in signalling

被引:16
作者
Hewitson, KS
McNeill, LA
Elkins, JM
Schofield, CJ [1 ]
机构
[1] Dyson Perrins Lab, Oxford Ctr Mol Sci, S Parks Rd, Oxford OX1 3QY, England
[2] Dyson Perrins Lab, Dept Chem, Oxford OX1 3QY, England
基金
英国生物技术与生命科学研究理事会;
关键词
hydroxylase; hypoxia; hypoxia-inducible factor (HIF); oxygen sensing; 2-oxoglutarate oxygenase;
D O I
10.1042/bst0310510
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sensing of ambient dioxygen levels and appropriate feedback mechanisms are essential processes for all multicellular organisms. In animals, moderate hypoxia causes an increase in the transcription levels of specific genes, including those encoding vascular endothelial growth factor and erythropoietin. The hypoxic response is mediated by hypoxia-inducible factor (HIF), an alphabeta heterodimeric transcription factor in which both the HIF subunits are members of the basic helix-loop-helix PAS (PER-ARNT-SIM) domain family. Under hypoxic conditions, levels of HIFalpha rise, allowing dimerization with HIFbeta and initiating transcriptional activation. Two types of dioxygen-dependent modification to HIFalpha have been identified, both of which inhibit the transcriptional response. Firstly, HIFalpha undergoes trans-4-hydroxylation at two conserved proline residues that enable its recognition by the von Hippel-Lindau tumour-suppressor protein. Subsequent ubiquitinylation, mediated by an ubiquitin ligase complex, targets HIFalpha for degradation. Secondly, hydroxylation of an asparagine residue in the C-terminal transactivation domain of HIFalpha directly prevents its interaction with the co-activator p300. Hydroxylation of HIFalpha is catalysed by enzymes of the iron(II)- and 2-oxoglutarate-dependent dioxygenase family. In humans, three prolyl hydroxylase isoenzymes (PHD1-3) and an asparagine hydroxylase [factor inhibiting HIF (FIH)] have been identified. The role of 2-oxoglutarate oxygenases in the hypoxic and other signalling pathways is discussed.
引用
收藏
页码:510 / 515
页数:6
相关论文
共 71 条
[1]  
Aravind L., 2001, GENOME BIOL, V2, p7.1
[2]   Evidence of domain swapping within the jumonji family of transcription factors [J].
Balciunas, D ;
Ronne, H .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (06) :274-276
[3]   Recent advances in heme-protein sensors [J].
Chan, MK .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2001, 5 (02) :216-222
[4]   Structure of proline 3-hydroxylase - Evolution of the family of 2-oxoglutarate dependent oxygenases [J].
Clifton, IJ ;
Hsueh, LC ;
Baldwin, JE ;
Harlos, K ;
Schofield, CJ .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (24) :6625-6636
[5]   JmjC:: cupin metalloenzyme-like domains in jumonji, hairless and phospholipase A2β [J].
Clissold, PM ;
Ponting, CP .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (01) :7-9
[6]   NOVEL INHIBITORS OF PROLYL 4-HYDROXYLASE .3. INHIBITION BY THE SUBSTRATE-ANALOG N-OXALOGLYCINE AND ITS DERIVATIVES [J].
CUNLIFFE, CJ ;
FRANKLIN, TJ ;
HALES, NJ ;
HILL, GB .
JOURNAL OF MEDICINAL CHEMISTRY, 1992, 35 (14) :2652-2658
[7]   Structural basis for Hif-1α/CBP recognition in the cellular hypoxic response [J].
Dames, SA ;
Martinez-Yamout, M ;
De Guzman, RN ;
Dyson, HJ ;
Wright, PE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5271-5276
[8]   Structure of factor-inhibiting hypoxia-inducible factor 1: An asparaginyl hydroxylase involved in the hypoxic response pathway [J].
Dann, CE ;
Bruick, RK ;
Deisenhofer, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (24) :15351-15356
[9]   Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1α [J].
Elkins, JM ;
Hewitson, KS ;
McNeill, LA ;
Seibel, JF ;
Schlemminger, I ;
Pugh, CW ;
Ratcliffe, PJ ;
Schofield, CJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (03) :1802-1806
[10]   X-ray crystal structure of Escherichia coli taurine/α-ketoglutarate dioxygenase complexed to ferrous iron and substrates [J].
Elkins, JM ;
Ryle, MJ ;
Clifton, IJ ;
Hotopp, JCD ;
Lloyd, JS ;
Burzlaff, NI ;
Baldwin, JE ;
Hausinger, RP ;
Roach, PL .
BIOCHEMISTRY, 2002, 41 (16) :5185-5192