Operadic twisting - With an application to Deligne's conjecture

被引:36
作者
Dolgushev, Vasily [1 ]
Willwacher, Thomas [2 ]
机构
[1] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
[2] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
FORMALITY;
D O I
10.1016/j.jpaa.2014.06.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study categorial properties of the operadic twisting functor Tw. In particular, we show that Tw is a comonad. Coalgebras of this comonad are operads for which a natural notion of twisting by Maurer-Cartan elements exists. We give a large class of examples, including the classical cases of the Lie, associative and Gerstenhaber operads, and their infinity-counterparts Lie(infinity), As-infinity, Ger(infinity). We also show that Tw is well behaved with respect to the homotopy theory of operads. As an application we show that every solution of Deligne's conjecture is homotopic to a solution that is compatible with twisting. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1349 / 1428
页数:80
相关论文
共 33 条
[1]  
[Anonymous], 2004, Contemp. Math.
[2]  
BATANIN MA, ARXIV08032249
[3]   Combinatorial operad actions on cochains [J].
Berger, C ;
Fresse, B .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2004, 137 :135-174
[4]   Combinatorics and Formal Geometry of the Maurer-Cartan Equation [J].
Chuang, Joseph ;
Lazarev, Andrey .
LETTERS IN MATHEMATICAL PHYSICS, 2013, 103 (01) :79-112
[5]   L-INFINITY MAPS AND TWISTINGS [J].
Chuang, Joseph ;
Lazarev, Andrey .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2011, 13 (02) :175-195
[6]   Covariant and equivariant formality theorems [J].
Dolgushev, V .
ADVANCES IN MATHEMATICS, 2005, 191 (01) :147-177
[7]   Proof of Swiss Cheese Version of Deligne's Conjecture [J].
Dolgushev, V. A. ;
Tamarkin, D. E. ;
Tsygan, B. L. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (20) :4666-4746
[8]  
Dolgushev V.A., 2005, ARXIVMATH0504420 MIT
[9]   Notes on algebraic operads, graph complexes, and Willwacher's construction [J].
Dolgushev, Vasily A. ;
Rogers, Christopher L. .
MATHEMATICAL ASPECTS OF QUANTIZATION, 2012, 583 :25-+
[10]   Lie theory of formal groups over an operad [J].
Fresse, B .
JOURNAL OF ALGEBRA, 1998, 202 (02) :455-511