Gaussian Process Regression for Materials and Molecules

被引:739
作者
Deringer, Volker L. [5 ]
Bartok, Albert P. [6 ,7 ]
Bernstein, Noam [1 ]
Wilkins, David M. [2 ]
Ceriotti, Michele [3 ,4 ]
Csanyi, Gabor [8 ]
机构
[1] US Naval Res Lab, Ctr Computat Mat Sci, Washington, DC 20375 USA
[2] Queens Univ Belfast, Atomist Simulat Ctr, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland
[3] Ecole Polytech Fed Lausanne, Lab Computat Sci & Modeling IMX, CH-1015 Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MA, Lausanne, Switzerland
[5] Univ Oxford, Dept Chem, Inorgan Chem Lab, Oxford OX1 3QR, England
[6] Univ Warwick, Dept Phys, Sch Engn, Coventry CV4 7AL, W Midlands, England
[7] Univ Warwick, Warwick Ctr Predict Modelling, Sch Engn, Coventry CV4 7AL, W Midlands, England
[8] Univ Cambridge, Engn Lab, Cambridge CB2 1PZ, England
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
DENSITY-FUNCTIONAL THEORY; PHASE-CHANGE MATERIALS; POTENTIAL-ENERGY SURFACES; MACHINE LEARNING-MODELS; X-RAY SPECTROSCOPY; AB-INITIO; AMORPHOUS-CARBON; INTERATOMIC POTENTIALS; ELECTRON-DENSITY; COMBINING EXPERIMENTS;
D O I
10.1021/acs.chemrev.1c00022
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We provide an introduction to Gaussian process regression (GPR) machinelearning methods in computational materials science and chemistry. The focus of the present review is on the regression of atomistic properties: in particular, on the construction of interatomic potentials, or force fields, in the Gaussian Approximation Potential (GAP) framework; beyond this, we also discuss the fitting of arbitrary scalar, vectorial, and tensorial quantities. Methodological aspects of reference data generation, representation, and regression, as well as the question of how a data-driven model may be validated, are reviewed and critically discussed. A survey of applications to a variety of research questions in chemistry and materials science illustrates the rapid growth in the field. A vision is outlined for the development of the methodology in the years to come.
引用
收藏
页码:10073 / 10141
页数:69
相关论文
共 414 条
[1]   Understanding X-ray Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional Theory, and Machine Learning. Part II: Quantitative Fitting of Spectra [J].
Aarva, Anja ;
Deringer, Volker L. ;
Sainio, Sami ;
Laurila, Tomi ;
Caro, Miguel A. .
CHEMISTRY OF MATERIALS, 2019, 31 (22) :9256-9267
[2]   Understanding X-ray Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional Theory, and Machine Learning. Part I: Fingerprint Spectra [J].
Aarva, Anja ;
Deringer, Volker L. ;
Sainio, Sami ;
Laurila, Tomi ;
Caro, Miguel A. .
CHEMISTRY OF MATERIALS, 2019, 31 (22) :9243-9255
[3]   Simulating materials failure by using up to one billion atoms and the world's fastest computer: Work-hardening [J].
Abraham, FF ;
Walkup, R ;
Gao, HJ ;
Duchaineau, M ;
De la Rubia, TD ;
Seager, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :5783-5787
[4]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[5]   Amorphous structures of Ge/Sb/Te alloys: Density functional simulations [J].
Akola, J. ;
Jones, R. O. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (10) :1851-1860
[6]   AB-INITIO MOLECULAR-DYNAMICS WITH EXCITED ELECTRONS [J].
ALAVI, A ;
KOHANOFF, J ;
PARRINELLO, M ;
FRENKEL, D .
PHYSICAL REVIEW LETTERS, 1994, 73 (19) :2599-2602
[7]   The 2019 materials by design roadmap [J].
Alberi, Kirstin ;
Nardelli, Marco Buongiorno ;
Zakutayev, Andriy ;
Mitas, Lubos ;
Curtarolo, Stefano ;
Jain, Anubhav ;
Fornari, Marco ;
Marzari, Nicola ;
Takeuchi, Ichiro ;
Green, Martin L. ;
Kanatzidis, Mercouri ;
Toney, Mike F. ;
Butenko, Sergiy ;
Meredig, Bryce ;
Lany, Stephan ;
Kattner, Ursula ;
Davydov, Albert ;
Toberer, Eric S. ;
Stevanovic, Vladan ;
Walsh, Aron ;
Park, Nam-Gyu ;
Aspuru-Guzik, Alan ;
Tabor, Daniel P. ;
Nelson, Jenny ;
Murphy, James ;
Setlur, Anant ;
Gregoire, John ;
Li, Hong ;
Xiao, Ruijuan ;
Ludwig, Alfred ;
Martin, Lane W. ;
Rappe, Andrew M. ;
Wei, Su-Huai ;
Perkins, John .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (01)
[8]   Boron: Elementary Challenge for Experimenters and Theoreticians [J].
Albert, Barbara ;
Hillebrecht, Harald .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (46) :8640-8668
[9]   Atomic permutationally invariant polynomials for fitting molecular force fields [J].
Allen, Alice E. A. ;
Dusson, Genevieve ;
Ortner, Christoph ;
Csanyi, Gabor .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (02)
[10]   Machine learning electron density in sulfur crosslinked carbon nanotubes [J].
Alred, John M. ;
Bets, Ksenia V. ;
Xie, Yu ;
Yakobson, Boris I. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2018, 166 :3-9