Gaussian Process Regression for Materials and Molecules

被引:629
作者
Deringer, Volker L. [5 ]
Bartok, Albert P. [6 ,7 ]
Bernstein, Noam [1 ]
Wilkins, David M. [2 ]
Ceriotti, Michele [3 ,4 ]
Csanyi, Gabor [8 ]
机构
[1] US Naval Res Lab, Ctr Computat Mat Sci, Washington, DC 20375 USA
[2] Queens Univ Belfast, Atomist Simulat Ctr, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland
[3] Ecole Polytech Fed Lausanne, Lab Computat Sci & Modeling IMX, CH-1015 Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MA, Lausanne, Switzerland
[5] Univ Oxford, Dept Chem, Inorgan Chem Lab, Oxford OX1 3QR, England
[6] Univ Warwick, Dept Phys, Sch Engn, Coventry CV4 7AL, W Midlands, England
[7] Univ Warwick, Warwick Ctr Predict Modelling, Sch Engn, Coventry CV4 7AL, W Midlands, England
[8] Univ Cambridge, Engn Lab, Cambridge CB2 1PZ, England
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
DENSITY-FUNCTIONAL THEORY; PHASE-CHANGE MATERIALS; POTENTIAL-ENERGY SURFACES; MACHINE LEARNING-MODELS; X-RAY SPECTROSCOPY; AB-INITIO; AMORPHOUS-CARBON; INTERATOMIC POTENTIALS; ELECTRON-DENSITY; COMBINING EXPERIMENTS;
D O I
10.1021/acs.chemrev.1c00022
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We provide an introduction to Gaussian process regression (GPR) machinelearning methods in computational materials science and chemistry. The focus of the present review is on the regression of atomistic properties: in particular, on the construction of interatomic potentials, or force fields, in the Gaussian Approximation Potential (GAP) framework; beyond this, we also discuss the fitting of arbitrary scalar, vectorial, and tensorial quantities. Methodological aspects of reference data generation, representation, and regression, as well as the question of how a data-driven model may be validated, are reviewed and critically discussed. A survey of applications to a variety of research questions in chemistry and materials science illustrates the rapid growth in the field. A vision is outlined for the development of the methodology in the years to come.
引用
收藏
页码:10073 / 10141
页数:69
相关论文
共 414 条
  • [1] Understanding X-ray Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional Theory, and Machine Learning. Part II: Quantitative Fitting of Spectra
    Aarva, Anja
    Deringer, Volker L.
    Sainio, Sami
    Laurila, Tomi
    Caro, Miguel A.
    [J]. CHEMISTRY OF MATERIALS, 2019, 31 (22) : 9256 - 9267
  • [2] Understanding X-ray Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional Theory, and Machine Learning. Part I: Fingerprint Spectra
    Aarva, Anja
    Deringer, Volker L.
    Sainio, Sami
    Laurila, Tomi
    Caro, Miguel A.
    [J]. CHEMISTRY OF MATERIALS, 2019, 31 (22) : 9243 - 9255
  • [3] Simulating materials failure by using up to one billion atoms and the world's fastest computer: Work-hardening
    Abraham, FF
    Walkup, R
    Gao, HJ
    Duchaineau, M
    De la Rubia, TD
    Seager, M
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) : 5783 - 5787
  • [4] Toward reliable density functional methods without adjustable parameters: The PBE0 model
    Adamo, C
    Barone, V
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) : 6158 - 6170
  • [5] Amorphous structures of Ge/Sb/Te alloys: Density functional simulations
    Akola, J.
    Jones, R. O.
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (10): : 1851 - 1860
  • [6] AB-INITIO MOLECULAR-DYNAMICS WITH EXCITED ELECTRONS
    ALAVI, A
    KOHANOFF, J
    PARRINELLO, M
    FRENKEL, D
    [J]. PHYSICAL REVIEW LETTERS, 1994, 73 (19) : 2599 - 2602
  • [7] The 2019 materials by design roadmap
    Alberi, Kirstin
    Nardelli, Marco Buongiorno
    Zakutayev, Andriy
    Mitas, Lubos
    Curtarolo, Stefano
    Jain, Anubhav
    Fornari, Marco
    Marzari, Nicola
    Takeuchi, Ichiro
    Green, Martin L.
    Kanatzidis, Mercouri
    Toney, Mike F.
    Butenko, Sergiy
    Meredig, Bryce
    Lany, Stephan
    Kattner, Ursula
    Davydov, Albert
    Toberer, Eric S.
    Stevanovic, Vladan
    Walsh, Aron
    Park, Nam-Gyu
    Aspuru-Guzik, Alan
    Tabor, Daniel P.
    Nelson, Jenny
    Murphy, James
    Setlur, Anant
    Gregoire, John
    Li, Hong
    Xiao, Ruijuan
    Ludwig, Alfred
    Martin, Lane W.
    Rappe, Andrew M.
    Wei, Su-Huai
    Perkins, John
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (01)
  • [8] Boron: Elementary Challenge for Experimenters and Theoreticians
    Albert, Barbara
    Hillebrecht, Harald
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (46) : 8640 - 8668
  • [9] Atomic permutationally invariant polynomials for fitting molecular force fields
    Allen, Alice E. A.
    Dusson, Genevieve
    Ortner, Christoph
    Csanyi, Gabor
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (02):
  • [10] Machine learning electron density in sulfur crosslinked carbon nanotubes
    Alred, John M.
    Bets, Ksenia V.
    Xie, Yu
    Yakobson, Boris I.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2018, 166 : 3 - 9