A High-Precision Bandgap Voltage Reference with Automatic Curvature-Compensation Technique

被引:2
作者
Zhou, Ze-kun [1 ,2 ]
Yu, Hongming [1 ,2 ]
Shi, Yue [1 ,2 ]
Wang, Zhuo [1 ,2 ]
Zhang, Bo [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, 4,Sect 2,North Jianshe Rd, Chengdu 610054, Peoples R China
[2] Chengdu Univ Informat Technol, Coll Commun Engn, 24,Block 1,Xuefu Rd, Chengdu 610225, Peoples R China
基金
美国国家科学基金会;
关键词
Automatic curvature-compensation technique; voltage reference; dynamic zero-temperature-coefficient point tracking; adaptive signal processing; digitization control; PPM/DEGREES-C; CMOS; NANOPOWER; SUB-1-V;
D O I
10.1142/S0218126619502141
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A high-precision bandgap voltage reference (BGR) with a novel curvature-compensation scheme is proposed in this paper. The temperature coefficient (TC) can be automatically optimized with a built-in adaptive curvature-compensation technique, which is realized in a digitization control way. An exponential curvature-compensation method is first adopted to reduce the TC in a certain degree, especially in low temperature range. Then, the temperature drift of BGR in higher temperature range can be further minimized by dynamic zero-temperature-coefficient point tracking (ZTCPT) with temperature changes. With the help of proposed adaptive signal processing, the output voltage of BGR can approximately maintain zero TC in a wider temperature range. Verification results of the BGR proposed in this paper, which is implemented in 0.35-mu m BiCMOS process, illustrate that the TC of 1.4 ppm/degrees C is realized under the power supply voltage of 3 V and the power supply rejection of the proposed circuit is -65 dB without any filter capacitor.
引用
收藏
页数:12
相关论文
共 18 条
[1]   A Novel Wide-Temperature-Range, 3.9 ppm/°C CMOS Bandgap Reference Circuit [J].
Andreou, Charalambos M. ;
Koudounas, Savvas ;
Georgiou, Julius .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (02) :574-581
[2]  
[Anonymous], 2016, P IEEE CAN C ELECT C, DOI DOI 10.1109/TIE.2013.2275966
[3]  
ASSADERAGHI F, 1994, INTERNATIONAL ELECTRON DEVICES MEETING 1994 - IEDM TECHNICAL DIGEST, P809, DOI 10.1109/IEDM.1994.383301
[4]   SIMPLE 3-TERMINAL IC BANDGAP REFERENCE [J].
BROKAW, AP .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1974, SC 9 (06) :388-393
[5]   A sub-1-V, 10 ppm/°C, nanopower voltage reference generator [J].
De Vita, Giuseppe ;
Iannaccone, Giuseppe .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2007, 42 (07) :1536-1542
[6]   A detailed analysis of power-supply noise attenuation in bandgap voltage references [J].
Giustolisi, G ;
Palumbo, G .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2003, 50 (02) :185-197
[7]   New curvature-compensation technique for CMOS bandgap reference with sub-1-V operation [J].
Ker, Ming-Dou ;
Chen, Jung-Sheng .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2006, 53 (08) :667-671
[8]   EXPONENTIAL CURVATURE-COMPENSATED BICMOS BANDGAP REFERENCES [J].
LEE, I ;
KIM, G ;
KIM, W .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1994, 29 (11) :1396-1403
[9]   A Subthreshold Voltage Reference With Scalable Output Voltage for Low-Power IoT Systems [J].
Lee, Inhee ;
Sylvester, Dennis ;
Blaauw, David .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (05) :1443-1449
[10]   A 2-V 23-μA 5.3-ppm/°C curvature-compensated CMOS bandgap voltage reference [J].
Leung, KN ;
Mok, PKT ;
Leung, CY .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2003, 38 (03) :561-564