Rhamnolipid as an eco-friendly corrosion inhibitor for microbiologically influenced corrosion

被引:35
作者
Li, Zhong [1 ,2 ]
Yuan, Xinyi [1 ,2 ]
Sun, Mingyue [1 ,2 ]
Li, Zhengtao [1 ,2 ]
Zhang, Danni [1 ,2 ]
Lei, Yuhao [1 ,2 ]
Zhang, Mingxing [1 ,2 ]
Fan, Yongqiang [1 ,3 ]
Xu, Dake [1 ,2 ]
Wang, Fuhui [1 ,2 ]
机构
[1] Northeastern Univ, Shenyang Natl Lab Mat Sci, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Inst Elect, Key Lab Anisotropy & Texture Mat, Minist Educ, Shenyang 110819, Peoples R China
[3] Northeastern Univ, Coll Life & Hlth Sci, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Rhamnolipid; Microbiologically influenced corrosion; Corrosion inhibitor; Biosurfactant; Carbon steel; PHYSICOCHEMICAL CHARACTERIZATION; PSEUDOMONAS-CHLORORAPHIS; GEMINI SURFACTANT; STAINLESS-STEEL; AMMONIUM-SALT; CHLORIDE-ION; CARBON-STEEL; BIOSURFACTANT; BIOFILM; NANOPARTICLES;
D O I
10.1016/j.corsci.2022.110390
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The development of sustainable and non-toxic corrosion inhibitors attracts much attentions. Herein, the rhamnolipid (RH) produced by Pseudomonas aeruginosa was found to effectively inhibit the corrosion of X70 carbon steel in simulated seawater. Moreover, RH was verified to protect X70 carbon steel against the microbiologically influenced corrosion (MIC) caused by Bacillus licheniformis, a typical corrosive bacterium. The addition of 0.1% (m/v) RH reduced the corrosion current density by 68.4% in the presence of B. licheniformis compared with untreated condition. The growth of B. licheniformis was significantly inhibited with RH concentration higher than 125 mg/L. The antimicrobial and corrosion inhibition effects make RH suitable for MIC inhibition.
引用
收藏
页数:12
相关论文
共 62 条
[1]   Cotton fabric graft copolymerization using microwave plasma. I. Universal attenuated total reflectance-FTIR study [J].
Abidi, N ;
Hequet, E .
JOURNAL OF APPLIED POLYMER SCIENCE, 2004, 93 (01) :145-154
[2]  
[Anonymous], 2003, G1-03, P17
[3]  
[Anonymous], 1949, J AM CHEM SOC, V71, P4124
[4]   Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms [J].
Bazaka, Kateryna ;
Jacob, Mohan V. ;
Crawford, Russell J. ;
Ivanova, Elena P. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 95 (02) :299-311
[5]   Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock [J].
Benincasa, M ;
Abalos, A ;
Oliveira, I ;
Manresa, A .
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2004, 85 (01) :1-8
[6]   Rhamnolipid (RL) from Pseudomonas aeruginosa OBP1: A novel chemotaxis and antibacterial agent [J].
Bharali, P. ;
Saikia, J. P. ;
Ray, A. ;
Konwar, B. K. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2013, 103 :502-509
[7]   Effects of Rhamnolipids from Pseudomonas aeruginosa DS10-129 on Luminescent Bacteria: Toxicity and Modulation of Cadmium Bioavailability [J].
Bondarenko, Olesja ;
Rahman, Pattanathu K. S. M. ;
Rahman, Thahira J. ;
Kahru, Anne ;
Ivask, Angela .
MICROBIAL ECOLOGY, 2010, 59 (03) :588-600
[8]   Hydrophilicity of dentin bonding systems influences in vitro Streptococcus mutans biofilm formation [J].
Brambilla, Eugenio ;
Ionescu, Andrei ;
Mazzoni, Annalisa ;
Cadenaro, Milena ;
Gagliani, Massimo ;
Ferraroni, Monica ;
Tay, Franklin ;
Pashley, David ;
Breschi, Lorenzo .
DENTAL MATERIALS, 2014, 30 (08) :926-935
[9]   Amino-containing tannic acid derivative-mediated universal coatings for multifunctional surface modification [J].
Cheng, Yan Fang ;
Pranantyo, Dicky ;
Kasi, Gopinath ;
Lu, Zhi Song ;
Li, Chang Ming ;
Xu, Li Qun .
BIOMATERIALS SCIENCE, 2020, 8 (08) :2120-2128
[10]   Introduction to biofilm [J].
Costerton, JW .
INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 1999, 11 (3-4) :217-221