Intrinsic curvature in normal and inverted lipid structures and in membranes

被引:104
|
作者
Marsh, D
机构
[1] Max-Planck-Inst. F. Biophysik. Chem., Abteilung Spektroskopie
[2] Max-Planck-Inst. F. Biophysik. Chem., Abteilung 010 Spektroskopie, D-37077 Göttingen-Nikolausberg, Am Fassberg
关键词
D O I
10.1016/S0006-3495(96)79790-4
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The intrinsic or spontaneous radius of curvature, R(o), of lipid monolayer assemblies is expressed in terms of a lipid molecular packing parameter, V/A/, for various geometries. It is shown that the equivalent lipid length, I, in inverted hexagonal (H-parallel to) phases, defined by a cylindrical shell of equal total lipid volume, yields an expression for R(o) identical to that for inverted cylindrical micelles (or, equivalently, H-parallel to phases in the presence of excess hydrocarbon), This identity is used to obtain values of the effective packing parameter for various phosphatidylethanolamines. The temperature dependence of the intrinsic radius of curvature is predicted to be negative and to be considerably greater than that for the lipid length in nearly all cases. The thermal expansion coefficient is not constant but is found to vary, depending on the value of the lipid packing parameter. A possible addition rule is constructed for the intrinsic radius of curvature of lipid mixtures, based on the linear additivity of the effective molecular volumes, V, and molecular areas, A. This relation is found to hold for mixtures of dioleoyl phosphatidylcholine (DOPC) with dioleoyl phosphatidylethanolamine, and a value of R(o) of greater than or equal to 95 Angstrom (V/A/ = 1.08) is obtained for DOPC. The energetics of the intrinsic curvature and lamellar-nonlamellar transitions are also discussed within the framework of the model.
引用
收藏
页码:2248 / 2255
页数:8
相关论文
共 50 条
  • [1] Lipid Organization in Mixed Lipid Membranes Driven by Intrinsic Curvature Difference
    Ranganathan, Radha
    Alshammri, Intisar
    Peric, Miroslav
    BIOPHYSICAL JOURNAL, 2020, 118 (08) : 1830 - 1837
  • [3] On ripples and rafts: Curvature induced nanoscale structures in lipid membranes
    Schmid, Friederike
    Dolezel, Stefan
    Lenz, Olaf
    Meinhardt, Sebastian
    VII BRAZILIAN MEETING ON SIMULATIONAL PHYSICS, 2014, 487
  • [4] Simulations of Inverted Hexagonal Lipid Structures
    Perutkova, Sarka
    Iglic, Ales
    ELEKTROTEHNISKI VESTNIK-ELECTROCHEMICAL REVIEW, 2009, 76 (03): : 92 - 96
  • [5] Simulations of inverted hexagonal lipid structures
    Laboratory of Physics, Faculty of Electrical Engineering, Tržaška 25, SI-1000 Ljubljana, Slovenia
    Elektroteh Vestn Electrotech Rev, 2009, 3 (92-96):
  • [6] Minimal surfaces in a unit sphere pinched by intrinsic curvature and normal curvature
    Dan Yang
    ScienceChina(Mathematics), 2019, 62 (09) : 1779 - 1792
  • [7] Minimal surfaces in a unit sphere pinched by intrinsic curvature and normal curvature
    Dan Yang
    Science China Mathematics, 2019, 62 : 1779 - 1792
  • [8] Minimal surfaces in a unit sphere pinched by intrinsic curvature and normal curvature
    Yang, Dan
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (09) : 1779 - 1792
  • [9] Flatness and intrinsic curvature of linked-ring membranes
    Polson, James M.
    Garcia, Edgar J.
    Klotz, Alexander R.
    SOFT MATTER, 2021, 17 (46) : 10505 - 10515
  • [10] Curvature Memory in Electrically Stimulated Lipid Membranes
    Lavrentovich, Maxim O.
    Carrillo, Jan-Michael Y.
    Collier, Charles Patrick
    Katsaras, John
    Bolmatov, Dima
    LANGMUIR, 2025, 41 (05) : 3157 - 3165