Chest X-Ray Analysis of Tuberculosis by Deep Learning with Segmentation and Augmentation

被引:0
作者
Stirenko, Sergii [1 ]
Kochura, Yuriy [1 ]
Alienin, Oleg [1 ]
Rokovyi, Oleksandr [1 ]
Gordienko, Yuri [1 ]
Gang, Peng [2 ]
Zeng, Wei [2 ]
机构
[1] Natl Tech Univ Ukraine, Igor Sikorsky Kyiv Polytech Inst, Kiev, Ukraine
[2] Huizhou Univ, Huizhou City, Peoples R China
来源
2018 IEEE 38TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO) | 2018年
关键词
deep learning; convolutional neural network; segmentation; open dataset; mask; data augmentation; TensorFlow; chest X-ray; computer-aided diagnosis; lung; tuberculosis; IMAGE DATABASE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The results of chest X-ray (CXR) analysis of 2D images to get the statistically reliable predictions (availability of tuberculosis) by computer-aided diagnosis (CADx) on the basis of deep learning are presented. They demonstrate the efficiency of lung segmentation, lossless and lossy data augmentation for CADx of tuberculosis by deep convolutional neural network (CNN) applied to the small and not well-balanced dataset even. CNN demonstrates ability to train (despite overfitting) on the pre-processed dataset obtained after lung segmentation in contrast to the original not-segmented dataset. Lossless data augmentation of the segmented dataset leads to the lowest validation loss (without overfitting) and nearly the same accuracy (within the limits of standard deviation) in comparison to the original and other pre-processed datasets after lossy data augmentation. The additional limited lossy data augmentation results in the lower validation loss, but with a decrease of the validation accuracy. In conclusion, besides the more complex deep CNNs and bigger datasets, the better progress of CADx for the small and not well-balanced datasets even could be obtained by better segmentation, data augmentation, dataset stratification, and exclusion of non-evident outliers.
引用
收藏
页码:422 / 428
页数:7
相关论文
共 19 条
  • [1] Abadi Martin, 2016, arXiv
  • [2] [Anonymous], 2017, Int J Math Sci Comput
  • [3] [Anonymous], INT C ADV COMP INT I
  • [4] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    [J]. MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931
  • [5] Chollet F., 2018, Deep Learning With Python
  • [6] Cleveland W., 1997, STAT MODELS, P309
  • [7] Gordienko N, 2015, 2015 8TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), P193, DOI 10.1109/MIPRO.2015.7160263
  • [8] Gordienko N., 2017, P 29 IUPAP C COMP PH
  • [9] Gordienko Yu., 2017, 1 INT C COMP SCI ENG
  • [10] Two public chest X-ray datasets for computer-aided screening of pulmonary diseases
    Jaeger, Stefan
    Candemir, Sema
    Antani, Sameer
    Wang, Yi-Xiang J.
    Lu, Pu-Xuan
    Thoma, George
    [J]. QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2014, 4 (06) : 475 - 477