Jordanian twist quantization of D=4 Lorentz and Poincare algebras and D=3 contraction limit

被引:14
作者
Borowiec, A.
Lukierski, J.
Tolstoy, V. N.
机构
[1] Univ Wroclaw, Inst Theoret Phys, PL-50205 Wroclaw, Poland
[2] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow 119992, Russia
来源
EUROPEAN PHYSICAL JOURNAL C | 2006年 / 48卷 / 02期
关键词
D O I
10.1140/epjc/s10052-006-0024-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We describe in detail the two-parameter nonstandard quantum deformation of the D = 4 Lorentz algebra o( 3, 1), linked with a Jordanian deformation of sl( 2; C). Using the twist quantization technique we obtain the explicit formulae for the deformed co-products and antipodes. Further extending the considered deformation to the D = 4 Poincare algebra we obtain a new Hopf-algebraic deformation of four-dimensional relativistic symmetries with a dimensionless deformation parameter. Finally, we interpret o( 3, 1) as the D = 3 de Sitter algebra and calculate the contraction limit R ->infinity ( R is the de Sitter radius) providing an explicit Hopf algebra structure for the quantum deformation of the D = 3 Poincare algebra ( with mass-like deformation parameters), which is the two-parameter light-cone deformation of the D = 3 Poincare symmetry.
引用
收藏
页码:633 / 639
页数:7
相关论文
共 27 条
[1]   A gravity theory on noncommultative spaces [J].
Aschieri, P ;
Blohmann, C ;
Dimitrijevi, M ;
Meyer, F ;
Schupp, P ;
Wess, J .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (17) :3511-3532
[2]   Jordanian quantum deformations of D=4 anti-de Sitter and Poincare superalgebras [J].
Borowiec, A ;
Lukierski, J ;
Tolstoy, VN .
EUROPEAN PHYSICAL JOURNAL C, 2005, 44 (01) :139-145
[3]  
BOROWIEC A, 2005, J PHYS, V55, P11
[4]   On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT [J].
Chaichian, M ;
Kulish, PP ;
Nishijima, K ;
Tureanu, A .
PHYSICS LETTERS B, 2004, 604 (1-2) :98-102
[5]   SPACETIME QUANTIZATION INDUCED BY CLASSICAL GRAVITY [J].
DOPLICHER, S ;
FREDENHAGEN, K ;
ROBERTS, JE .
PHYSICS LETTERS B, 1994, 331 (1-2) :39-44
[6]   THE QUANTUM STRUCTURE OF SPACETIME AT THE PLANCK-SCALE AND QUANTUM-FIELDS [J].
DOPLICHER, S ;
FREDENHAGEN, K ;
ROBERTS, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :187-220
[7]  
Drinfel'd V. G., 1987, P INT C MATHEMATICIA, V1, P798
[8]  
Drinfeld V.G., 1990, Leningrad Math. J., V1, P1419
[9]  
FADDEEV LD, 1989, ALGEBRA ANAL, V1, P178
[10]   Space-time symmetry of noncommutative field theory [J].
Gonera, C ;
Kosinski, P ;
Maslanka, P ;
Giller, S .
PHYSICS LETTERS B, 2005, 622 (1-2) :192-197