Tailoring of the electrical properties of carbon black-silica coatings for de-icing applications

被引:19
作者
Enriquez, E. [1 ]
Fernandez, J. F. [1 ]
De Frutos, J. [2 ]
De la Rubia, M. A. [1 ]
机构
[1] CSIC, Electroceram Dept, Inst Ceram & Vidrio, Madrid 28049, Spain
[2] UPM, Poemma Grp, ETSITelecomunicat, Madrid 28040, Spain
关键词
Thermal properties; Conductive thin films; de-icing applications; Multifunctional; CONDUCTIVE COATINGS; DISPERSION; NANOCOMPOSITES; TRANSPARENT; COMPOSITES; ELECTRODES;
D O I
10.1016/j.ceramint.2014.10.088
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electrical heating properties of carbon black silica composite coatings have been studied for de-icing devices. Coatings are consolidated by spray deposition onto tile substrates and thermal treated in the temperature range of 300-500 degrees C in air atmosphere. The electrical properties of the coatings depend on the thermal treatment as for higher sintering temperatures the coatings are more resistive, and consequently the heating produced by the Joule effect is more significant. Therefore, it is possible to tailor the heating properties of the coatings by means the thermal treatment, achieving thin coatings with low electrical resistance (similar to 5 x 10(-4) Omega m), or coatings with higher resistivity (similar to 5 x 10(-3) Omega m) which produce thermal heating >70 degrees C with heating rate >0.13 degrees C s(-1). This coating heating is determined using DC intensity-voltage curves and thermal infrared camera. The relationship between electrical power and temperature increasing showed a nearly linear dependence. The experimental results for these coatings allow their use in a wide range of functional applications, such as de-icing devices for aeronautics. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:2735 / 2743
页数:9
相关论文
共 28 条
[1]   Determination of the electrical behaviour of surfactant treated polymer/carbon black composite gas sensors [J].
Arshak, K ;
Moore, E ;
Cavanagh, L ;
Harris, J ;
McConigly, B ;
Cunniffe, C ;
Lyons, G ;
Clifford, S .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2005, 36 (04) :487-491
[2]   Studies on graphite based conductive paint coatings [J].
Azim, SS ;
Satheesh, A ;
Ramu, KK ;
Ramu, S ;
Venkatachari, G .
PROGRESS IN ORGANIC COATINGS, 2006, 55 (01) :1-4
[3]  
Balcells J., 1992, INTERFERANCIAS ELECT, P71
[4]   Properties related phase evolution in porcelain ceramics [J].
Carbajal, L. ;
Rubio-Marcos, F. ;
Bengochea, M. A. ;
Fernandez, J. F. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (13-15) :4065-4069
[5]   Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing [J].
Chung, D. D. L. .
CARBON, 2012, 50 (09) :3342-3353
[6]   Determination of effective electrode configuration for electrical measurements of carbon thin conductive coatings [J].
Enriquez, E. ;
de Frutos, J. ;
Fernandez, J. F. ;
de la Rubia, M. A. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2014, 23 :110-114
[7]   Highly conductive coatings of carbon black/silica composites obtained by a sol-gel process [J].
Enriquez, E. ;
Fernandez, J. F. ;
de la Rubia, M. A. .
CARBON, 2012, 50 (12) :4409-4417
[8]   Effects of surface modification, carbon nanofiber concentration, and dispersion time on the mechanical properties of carbon-nanofiber-polycarbonate composites [J].
Gao, Yong ;
He, Peng ;
Lian, Jie ;
Schuiz, Mark J. ;
Zhao, Jiang ;
Wang, Wei ;
Wang, Xiaqin ;
Zhang, Jing ;
Zhou, Xingping ;
Shi, Donglu .
JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 103 (06) :3792-3797
[9]   Thermal conductivity of traditional ceramics. Part I: Influence of bulk density and firing temperature [J].
Garcia Ten, J. ;
Orts, M. J. ;
Saburit, A. ;
Silva, G. .
CERAMICS INTERNATIONAL, 2010, 36 (06) :1951-1959
[10]  
German R., 1985, LIQUID PHASE SINTERI