One-dimensional nanostructures for flexible supercapacitors

被引:63
作者
Wang, Yuhang [1 ]
Zeng, Jiren [1 ]
Li, Jun [1 ]
Cui, Xiaoqi [1 ]
Al-Enizi, Abdullah M. [2 ]
Zhang, Lijuan [1 ]
Zheng, Gengfeng [1 ]
机构
[1] Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat, Dept Chem, Adv Mat Lab, Shanghai 200433, Peoples R China
[2] King Saud Univ, Coll Sci, Dept Chem, Riyadh 11451, Saudi Arabia
关键词
ALL-SOLID-STATE; POROUS CARBON NANOFIBERS; CORE-SHELL NANOWIRES; ELECTROCHEMICAL ENERGY-STORAGE; SHAPED MICRO-SUPERCAPACITOR; LITHIUM-ION BATTERY; HIGH-PERFORMANCE; NANOTUBE ARRAYS; ASYMMETRIC SUPERCAPACITORS; MNO2; NANOWIRES;
D O I
10.1039/c5ta03467a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The emergence of flexible electronic devices has put forward new requirements for their power sources, and fabrication of flexible supercapacitors with excellent electrochemical performances will be a new approach to fulfill this demand. As promising candidates for high performance flexible supercapacitors, one-dimensional nanostructured materials have attracted increasing interest owing to their high specific area, efficient electron transport, and excellent mechanical strength, thus enabling them to be flexible supercapacitors with some remarkable properties, such as high energy densities, superb power densities, and great flexibilities. Moreover, based on their application demands, flexible supercapacitors can be designed into different structures, including sandwich-type, wire-shaped, and chip-type. In this regard, one-dimensional nanostructured material-based flexible supercapacitors exhibit great promise for next-generation flexible electronic devices. Herein, we summarize the recent progress in one-dimensional nanostructured material based flexible supercapacitors. The challenges and prospects of flexible supercapacitors are also discussed.
引用
收藏
页码:16382 / 16392
页数:11
相关论文
共 134 条
  • [1] Synthesis and electrochemical properties of nickel oxide/carbon nanofiber composites
    Al-Enizi, Abdullah M.
    Elzatahry, Ahmed A.
    Abdullah, Aboubakr M.
    AlMaadeed, Mariam A.
    Wang, Jinxiu
    Zhao, Dongyuan
    Al-Deyab, Salem
    [J]. CARBON, 2014, 71 : 276 - 283
  • [2] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [3] The global energy landscape and materials innovation
    Arunachalam, V. S.
    Fleischer, E. L.
    [J]. MRS BULLETIN, 2008, 33 (04) : 264 - 276
  • [4] Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions
    Avasarala, Bharat
    Haldar, Pradeep
    [J]. ELECTROCHIMICA ACTA, 2010, 55 (28) : 9024 - 9034
  • [5] Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage
    Bae, Joonho
    Song, Min Kyu
    Park, Young Jun
    Kim, Jong Min
    Liu, Meilin
    Wang, Zhong Lin
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (07) : 1683 - 1687
  • [6] Hollow Co0.85Se Nanowire Array on Carbon Fiber Paper for High Rate Pseudocapacitor
    Banerjee, Abhik
    Bhatnagar, Sumit
    Upadhyay, Kush Kumar
    Yadav, Prasad
    Ogale, Satishchandra
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (21) : 18844 - 18852
  • [7] Flexible Zn2SnO4/MnO2 Core/Shell Nanocable-Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes
    Bao, Lihong
    Zang, Jianfeng
    Li, Xiaodong
    [J]. NANO LETTERS, 2011, 11 (03) : 1215 - 1220
  • [8] Brabec CJ, 2001, ADV FUNCT MATER, V11, P15, DOI 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO
  • [9] 2-A
  • [10] High-performance lithium battery anodes using silicon nanowires
    Chan, Candace K.
    Peng, Hailin
    Liu, Gao
    McIlwrath, Kevin
    Zhang, Xiao Feng
    Huggins, Robert A.
    Cui, Yi
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (01) : 31 - 35