Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning

被引:179
作者
Chen, Mingyu [1 ,2 ,3 ]
Zhang, Bin [1 ]
Topatana, Win [4 ]
Cao, Jiasheng [1 ]
Zhu, Hepan [1 ]
Juengpanich, Sarun [4 ]
Mao, Qijiang [1 ]
Yu, Hong [1 ]
Cai, Xiujun [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Sir Run Run Shaw Hosp, Dept Gen Surg, Hangzhou 310016, Peoples R China
[2] Zhejiang Univ, Sir Run Run Shaw Hosp, Key Lab Endoscop Tech Res Zhejiang Prov, Hangzhou 310016, Peoples R China
[3] Engn Res Ctr Cognit Healthcare Zhejiang Prov, Hangzhou 310003, Peoples R China
[4] Zhejiang Univ, Sch Med, Hangzhou 310000, Peoples R China
基金
中国国家自然科学基金;
关键词
HEPATOCELLULAR-CARCINOMA; THERAPY; MACHINE;
D O I
10.1038/s41698-020-0120-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer, and assessing its histopathological grade requires visual inspection by an experienced pathologist. In this study, the histopathological H&E images from the Genomic Data Commons Databases were used to train a neural network (inception V3) for automatic classification. According to the evaluation of our model by the Matthews correlation coefficient, the performance level was close to the ability of a 5-year experience pathologist, with 96.0% accuracy for benign and malignant classification, and 89.6% accuracy for well, moderate, and poor tumor differentiation. Furthermore, the model was trained to predict the ten most common and prognostic mutated genes in HCC. We found that four of them, includingCTNNB1,FMN2,TP53, andZFX4, could be predicted from histopathology images, with external AUCs from 0.71 to 0.89. The findings demonstrated that convolutional neural networks could be used to assist pathologists in the classification and detection of gene mutation in liver cancer.
引用
收藏
页数:7
相关论文
共 33 条
[1]   Gene expression profiling, pathway analysis and subtype classification reveal molecular heterogeneity in hepatocellular carcinoma and suggest subtype specific therapeutic targets [J].
Agarwal, Rahul ;
Narayan, Jitendra ;
Bhattacharyya, Amitava ;
Saraswat, Mayank ;
Tomar, Anil Kumar .
CANCER GENETICS, 2017, 216 :37-51
[2]  
[Anonymous], 2019, J MED ARTIF INTELL
[3]   Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies [J].
Bejnordi, Babak Ehteshami ;
Mullooly, Maeve ;
Pfeiffer, Ruth M. ;
Fan, Shaoqi ;
Vacek, Pamela M. ;
Weaver, Donald L. ;
Herschorn, Sally ;
Brinton, Louise A. ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Beck, Andrew H. ;
Gierach, Gretchen L. ;
van der Laak, Jeroen A. W. M. ;
Sherman, Mark E. .
MODERN PATHOLOGY, 2018, 31 (10) :1502-1512
[4]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715
[5]   Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification [J].
Calderaro, Julien ;
Couchy, Gabrielle ;
Imbeaud, Sandrine ;
Amaddeo, Giuliana ;
Letouze, Eric ;
Blanc, Jean-Frederic ;
Laurent, Christophe ;
Hajji, Yacine ;
Azoulay, Daniel ;
Bioulac-Sage, Paulette ;
Nault, Jean-Charles ;
Zucman-Rossi, Jessica .
JOURNAL OF HEPATOLOGY, 2017, 67 (04) :727-738
[6]   Molecular mechanistic insight of hepatitis B virus mediated hepatocellular carcinoma [J].
Chaturvedi, Vivek K. ;
Singh, Anshuman ;
Dubey, Sushil K. ;
Hetta, Helal F. ;
John, James ;
Singh, M. P. .
MICROBIAL PATHOGENESIS, 2019, 128 :184-194
[7]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[8]   Machine Learning and the Profession of Medicine [J].
Darcy, Alison M. ;
Louie, Alan K. ;
Roberts, Laura Weiss .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 315 (06) :551-552
[9]  
Jemal A, 2011, CA-CANCER J CLIN, V61, P134, DOI [10.3322/caac.20107, 10.3322/caac.20115, 10.3322/caac.21492]
[10]   Role of cellular, molecular and tumor microenvironment in hepatocellular carcinoma: Possible targets and future directions in the regorafenib era [J].
Juengpanich, Sarun ;
Topatana, Win ;
Lu, Chen ;
Staiculescu, Daniel ;
Li, Shijie ;
Cao, Jiasheng ;
Lin, Jiacheng ;
Hu, Jiahao ;
Chen, Mingyu ;
Chen, Jiang ;
Cai, Xiujun .
INTERNATIONAL JOURNAL OF CANCER, 2020, 147 (07) :1778-1792