Quasi-QSAR for predicting the cell viability of human lung and skin cells exposed to different metal oxide nanomaterials

被引:60
作者
Choi, Jang-Sik [1 ,5 ]
Trinh, Tung X. [2 ]
Yoon, Tae-Hyun [2 ]
Kim, Jongwoon [3 ,4 ]
Byun, Hyung-Gi [1 ]
机构
[1] Kangwon Natl Univ Samcheok, Div Elect Informat & Commun Engn, Kangwon Do 25913, South Korea
[2] Hanyang Univ, Coll Nat Sci, Dept Chem, Seoul 04763, South Korea
[3] Korea Inst Sci & Technol KIST Europe, Environm Safety Grp, Campus E 7-1, Saarbrueck En, Germany
[4] KRICT, Chem Safety Res Ctr, 141 Gajeong Ro, Daejeon 34114, South Korea
[5] Hanyang Univ, Ctr Next Generat Cytometry, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
metal oxide nanomaterial; BEAS-2B; HaCaT; Cell viability; Quasi-QSAR; Quasi-SMILES; ECLECTIC DATA; OPTIMAL DESCRIPTOR; MATHEMATICAL FUNCTION; MEMBRANE DAMAGE; IN-VITRO; QUANTITATIVE STRUCTURE; NANO-QSAR; NANOPARTICLES; MODEL; SMILES;
D O I
10.1016/j.chemosphere.2018.11.014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A quasi-QSAR model was developed to predict the cell viability of human lung (BEAS-2B) and skin (HaCaT) cells exposed to 21 types of metal oxide nanomaterials. A wide range of toxicity datasets obtained from the S2NANO (www.s2nano.org ) database was used. The data of descriptors representing the physicochemical properties and experimental conditions were coded to quasi-SMILES. In particular, hierarchical cluster analysis (HCA) and min-max normalization method were respectively used in assigning alphanumeric codes for numerical descriptors (e.g., core size, hydrodynamic size, surface charge, and dose) and then quasi-QSAR model performances for both methods were compared. The quasi-Q$AR models were developed using CORAL software (www.insilico.euicoral). Quasi-QSAR model built using quasi-SMILES generated by means of HCA showed better performance than the min-max normalization method. The model showed satisfactory statistical results (R-adj(2) for the training dataset: 0.71-0.73; R-adj(2) for the calibration dataset: 0.74-0.82; and R-adj(2) for the validation dataset: 0.70-0.76). (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:243 / 249
页数:7
相关论文
共 47 条
  • [1] Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species
    Akhtar, Mohd Javed
    Ahamed, Maqusood
    Kumar, Sudhir
    Khan, M. A. Majeed
    Ahmad, Javed
    Alrokayan, Salman A.
    [J]. INTERNATIONAL JOURNAL OF NANOMEDICINE, 2012, 7 : 845 - 857
  • [2] Bragazzi N, 2016, NANOWORLD J, V2, P2016
  • [3] Slow release of ions from internalized silver nanoparticles modifies the epidermal growth factor signaling response
    Comfort, Kristen K.
    Maurer, Elizabeth I.
    Hussain, Saber M.
    [J]. COLLOIDS AND SURFACES B-BIOINTERFACES, 2014, 123 : 136 - 142
  • [4] Toxicological Assessment of Inhaled Nanoparticles: Role of in Vivo, ex Vivo, in Vitro, and in Silico Studies
    Froehlich, Eleonore
    Salar-Behzadi, Sharareh
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (03) : 4795 - 4822
  • [5] Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR studies
    Gajewicz, Agnieszka
    Schaeublin, Nicole
    Rasulev, Bakhtiyor
    Hussain, Saber
    Leszczynska, Danuta
    Puzyn, Tomasz
    Leszczynski, Jerzy
    [J]. NANOTOXICOLOGY, 2015, 9 (03) : 313 - 325
  • [6] Physicochemical Properties of Nanomaterials: Implication in Associated Toxic Manifestations
    Gatoo, Manzoor Ahmad
    Naseem, Sufia
    Arfat, Mir Yasir
    Dar, Ayaz Mahmood
    Qasim, Khusro
    Zubair, Swaleha
    [J]. BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [7] In vitro Irritation Models and Immune Reactions
    Gibbs, S.
    [J]. SKIN PHARMACOLOGY AND PHYSIOLOGY, 2009, 22 (02) : 103 - 113
  • [8] Toxicity Classification of Oxide Nanomaterials: Effects of Data Gap Filling and PChem Score-based Screening Approaches
    Ha, My Kieu
    Trinh, Tung Xuan
    Choi, Jang Sik
    Maulina, Desy
    Byun, Hyung Gi
    Yoon, Tae Hyun
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [9] InChI - the worldwide chemical structure identifier standard
    Heller, Stephen
    McNaught, Alan
    Stein, Stephen
    Tchekhovskoi, Dmitrii
    Pletnev, Igor
    [J]. JOURNAL OF CHEMINFORMATICS, 2013, 5
  • [10] QSAR model for cytotoxicity of silica nanoparticles on human embryonic kidney cells
    Manganelli, Serena
    Leone, Caterina
    Toropov, Andrey A.
    Toropova, Alla P.
    Benfenati, Emilio
    [J]. MATERIALS TODAY-PROCEEDINGS, 2016, 3 (03) : 847 - 854