Rationality of vertex operator algebra VL+: higher rank

被引:16
|
作者
Dong, Chongying [1 ,2 ]
Jiang, Cuipo [3 ]
Lin, Xingjun [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610065, Peoples R China
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
美国国家科学基金会;
关键词
IRREDUCIBLE MODULES; FUSION RULES; REPRESENTATIONS; CLASSIFICATION; REGULARITY; M(1)(+);
D O I
10.1112/plms/pdr055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The lattice vertex operator V-L associated to a positive definite even lattice L has an automorphism of order 2 lifted from-1 isometry of L. It is established that the fixed point vertex operator algebra V-L(+) is rational.
引用
收藏
页码:799 / 826
页数:28
相关论文
共 45 条
  • [1] Rationality of the vertex algebra VL+ when L is a non-degenerate even lattice of arbitrary rank
    Yamskulna, Gaywalee
    JOURNAL OF ALGEBRA, 2009, 321 (03) : 1005 - 1015
  • [2] Representations of the vertex operator algebra VL2A4
    Dong, Chongying
    Jiang, Cuipo
    JOURNAL OF ALGEBRA, 2013, 377 : 76 - 96
  • [3] C2-COFINITENESS OF THE VERTEX ALGEBRA VL+ WHEN L IS A NONDEGENERATE EVEN LATTICE
    Jitjankarn, Phichet
    Yamskulna, Gaywalee
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (12) : 4404 - 4415
  • [4] Fusion rules for the vertex operator algebra VL2A4
    Dong, Chongying
    Jiang, Cuipo
    Jiang, Qifen
    Jiao, Xiangyu
    Yu, Nina
    JOURNAL OF ALGEBRA, 2015, 423 : 476 - 505
  • [5] A characterization of the rational vertex operator algebra VZα+: II
    Dong, Chongying
    Jiang, Cuipo
    ADVANCES IN MATHEMATICS, 2013, 247 : 41 - 70
  • [6] 2-Permutations of lattice vertex operator algebras: Higher rank
    Dong, Chongying
    Xu, Feng
    Yu, Nina
    JOURNAL OF ALGEBRA, 2017, 476 : 1 - 25
  • [8] TWISTED HEISENBERG-VIRASORO VERTEX OPERATOR ALGEBRA
    Guo, Hongyan
    Wang, Qing
    GLASNIK MATEMATICKI, 2019, 54 (02) : 369 - 407
  • [9] The level two Zhu algebra for the Heisenberg vertex operator algebra
    Addabbo, Darlayne
    Barron, Katrina
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (08) : 3405 - 3463
  • [10] A quasi-Hopf algebra for the triplet vertex operator algebra
    Creutzig, Thomas
    Gainutdinov, Azat M.
    Runkel, Ingo
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (03)