Romik's conjecture for the Jacobi theta function

被引:1
作者
Wakhare, Tanay [1 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
关键词
Jacobi theta function; Congruences; Elementary number theory;
D O I
10.1016/j.jnt.2020.01.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dan Romik recently considered the Taylor coefficients of the Jacobi theta function around the complex multiplication point i. He then conjectured that the Taylor coefficients d(n) either vanish or are periodic modulo any prime p; this was proved by the combined efforts of Scherer and Guerzhoy-Mertens-Rolen, with the latter trio considering arbitrary half integral weight modular forms. We refine previous work for p 1 (mod 4) by displaying a concise algebraic relation between d (n + p-1/2) related to the p-adic factorial, from which we can deduce periodicity with an effective period. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:275 / 296
页数:22
相关论文
共 8 条
[1]  
Andrews GE., 1998, THEORY PARTITIONS
[2]  
Apostol TM., 1998, Introduction to analytic number theory, V5th
[3]  
Guerzhoy P., PERIODICITIES TAYLOR, P1
[4]  
Hurwitz A., 1899, MATH ANN, V51, p[196, 342], DOI 10.1007/BF01453637
[5]  
Ishihara H., 2001, ANN COMB, V5, P197, DOI DOI 10.1007/PL00001300
[6]  
Lucas E., 1878, Bull. Soc. Math. France, V6, P49
[7]  
Romik D., 2019, RAMANUJAN J ONLINE 1, V3, P1
[8]  
Scherer R., CONGRUENCES MODULO P, V3, P1