Almost free modules and Mittag-Leffler conditions

被引:40
作者
Herbera, Dolors [2 ]
Trlifaj, Jan [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Prague 18675 8, Czech Republic
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Bellaterra, Barcelona, Spain
关键词
Mittag-Leffler module; N-1-Projective module; Deconstructible class; Kaplansky class; Model category structure; Quasi-coherent sheaf; COTORSION PAIRS; PROJECTIVITY; CATEGORY; FLATNESS; RINGS;
D O I
10.1016/j.aim.2012.02.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Drinfeld recently suggested to replace projective modules by the flat Mittag-Leffler ones in the definition of an infinite dimensional vector bundle on a scheme X (Drinfeld, 2006 [8]). Two questions arise: (1) What is the structure of the class D of all flat Mittag-Leffler modules over a general ring? (2) Can flat Mittag-Leffler modules be used to build a Quillen model category structure on the category of all chain complexes of quasi-coherent sheaves on X? We answer (1) by showing that a module M is flat Mittag-Leffler, if and only if M is N-1-projective in the sense of Eklof and Mekler (2002) [10]. We use this to characterize the rings such that Disclosed under products, and relate the classes of all Mittag-Leffler, strict Mittag-Leffler, and separable modules. Then we prove that the class D is not deconstructible for any non-right perfect ring. So unlike the classes of all projective and flat modules, the class D does not admit the homotopy theory tools developed recently by Hovey (2002) [26]. This gives a negative answer to (2). (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:3436 / 3467
页数:32
相关论文
共 39 条
[11]   Locally projective monoidal model structure for complexes of quasi-coherent sheaves on P1(k) [J].
Enochs, E. ;
Estrada, S. ;
Garcia-Rozas, J. R. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 :253-269
[12]   Relative homological algebra in the category of quasi-coherent sheaves [J].
Enochs, E ;
Estrada, S .
ADVANCES IN MATHEMATICS, 2005, 194 (02) :284-295
[13]  
Enochs EE, 2002, REND SEM MAT UNIV P, V107, P67
[14]  
Estrada S., DESCENT RESTRICTED F
[15]  
Estrada S., MODEL CATEGORY STRUC
[16]  
FUCHS L, 2001, MATH SURVEYS MONOGR, V84
[17]   UNIVERSALLY TORSIONLESS AND TRACE MODULES [J].
GARFINKEL, GS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 215 (JAN) :119-144
[18]   Kaplansky classes and derived categories [J].
Gillespie, James .
MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (04) :811-843
[19]  
Gobel Rudiger, 2006, DEGRUYTER EXP MATH, V41
[20]  
Goodearl K. R., 1991, VONNEUMANN REGULAR R