Almost free modules and Mittag-Leffler conditions

被引:40
作者
Herbera, Dolors [2 ]
Trlifaj, Jan [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Prague 18675 8, Czech Republic
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Bellaterra, Barcelona, Spain
关键词
Mittag-Leffler module; N-1-Projective module; Deconstructible class; Kaplansky class; Model category structure; Quasi-coherent sheaf; COTORSION PAIRS; PROJECTIVITY; CATEGORY; FLATNESS; RINGS;
D O I
10.1016/j.aim.2012.02.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Drinfeld recently suggested to replace projective modules by the flat Mittag-Leffler ones in the definition of an infinite dimensional vector bundle on a scheme X (Drinfeld, 2006 [8]). Two questions arise: (1) What is the structure of the class D of all flat Mittag-Leffler modules over a general ring? (2) Can flat Mittag-Leffler modules be used to build a Quillen model category structure on the category of all chain complexes of quasi-coherent sheaves on X? We answer (1) by showing that a module M is flat Mittag-Leffler, if and only if M is N-1-projective in the sense of Eklof and Mekler (2002) [10]. We use this to characterize the rings such that Disclosed under products, and relate the classes of all Mittag-Leffler, strict Mittag-Leffler, and separable modules. Then we prove that the class D is not deconstructible for any non-right perfect ring. So unlike the classes of all projective and flat modules, the class D does not admit the homotopy theory tools developed recently by Hovey (2002) [26]. This gives a negative answer to (2). (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:3436 / 3467
页数:32
相关论文
共 39 条
[1]  
[Anonymous], THESIS KIEL
[2]   RINGS OF PURE GLOBAL DIMENSION ZERO AND MITTAG-LEFFLER MODULES [J].
AZUMAYA, G ;
FACCHINI, A .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 62 (02) :109-122
[3]  
AZUMAYA G, 1992, CONT MATH, V124, P17
[4]   FLAT MITTAG-LEFFLER MODULES OVER COUNTABLE RINGS [J].
Bazzoni, Silvana ;
Stovicek, Jan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (05) :1527-1533
[5]   All modules have flat covers [J].
Bican, L ;
El Bashir, R ;
Enochs, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :385-390
[6]   COHERENCE FOR POLYNOMIAL-RINGS [J].
CAMILLO, V .
JOURNAL OF ALGEBRA, 1990, 132 (01) :72-76
[7]  
Drinfeld V, 2006, PROG MATH, V244, P263
[8]  
Eklof P C., 2002, Almost free modules: Set-theoretic methods
[9]   Shelah's singular compactness theorem [J].
Eklof, Paul C. .
PUBLICACIONS MATEMATIQUES, 2008, 52 (01) :3-18
[10]   Whitehead modules over large principal ideal domains [J].
Eklof, PC ;
Shelah, S .
FORUM MATHEMATICUM, 2002, 14 (03) :477-482