Solid effect dynamic nuclear polarization and polarization pathways

被引:100
作者
Smith, Albert A.
Corzilius, Bjoern
Barnes, Alexander B.
Maly, Thorsten
Griffin, Robert G. [1 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
diffusion barriers; dynamic nuclear polarisation; ENHANCED NMR-SPECTROSCOPY; SPIN-LATTICE RELAXATION; PARAMAGNETIC IMPURITIES; IRRADIATED POLYETHYLENES; NONCONDUCTING SOLIDS; DIFFUSION BARRIER; STATE NMR; RESONANCE; DNP; SENSITIVITY;
D O I
10.1063/1.3670019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using dynamic nuclear polarization (DNP)/nuclear magnetic resonance instrumentation that utilizes a microwave cavity and a balanced rf circuit, we observe a solid effect DNP enhancement of 94 at 5 T and 80 K using trityl radical as the polarizing agent. Because the buildup rate of the solid effect increases with microwave field strength, we obtain a sensitivity gain of 128. The data suggest that higher microwave field strengths would lead to further improvements in sensitivity. In addition, the observation of microwave field dependent enhancements permits us to draw conclusions about the path that polarization takes during the DNP process. By measuring the time constant for the polarization buildup and enhancement as a function of the microwave field strength, we are able to compare models of polarization transfer, and show that the major contribution to the bulk polarization arises via direct transfer from electrons, rather than transferring first to nearby nuclei and then transferring to bulk nuclei in a slow diffusion step. In addition, the model predicts that nuclei near the electron receive polarization that can relax, decrease the electron polarization, and attenuate the DNP enhancement. The magnitude of this effect depends on the number of near nuclei participating in the polarization transfer, hence the size of the diffusion barrier, their T-1, and the transfer rate. Approaches to optimizing the DNP enhancement are discussed. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3670019]
引用
收藏
页数:16
相关论文
共 71 条
[1]   PRINCIPLES OF DYNAMIC NUCLEAR-POLARIZATION [J].
ABRAGAM, A ;
GOLDMAN, M .
REPORTS ON PROGRESS IN PHYSICS, 1978, 41 (03) :395-467
[2]  
Abragam A., 1982, NUCL MAGNETISM ORDER
[3]  
Abragam A., 1958, C R ACAD SCI, V246
[4]   DIRECT ELECTRON-TO-CARBON POLARIZATION TRANSFER IN HOMOGENEOUSLY DOPED POLYCARBONATES [J].
AFEWORKI, M ;
VEGA, S ;
SCHAEFER, J .
MACROMOLECULES, 1992, 25 (16) :4100-4105
[5]   Dynamic Nuclear Polarization of Deuterated Proteins [J].
Akbey, Uemit ;
Franks, W. Trent ;
Linden, Arne ;
Lange, Sascha ;
Griffin, Robert G. ;
van Rossum, Barth-Jan ;
Oschkinat, Hartmut .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (42) :7803-7806
[6]  
[Anonymous], 1990, Principles of Nuclear Magnetic Resonance in One and Two Dimensions
[7]  
[Anonymous], 2009, MATLAB
[8]   DNP enhanced frequency-selective TEDOR experiments in bacteriorhodopsin [J].
Bajaj, Vikram S. ;
Mak-Jurkauskas, Melody L. ;
Belenky, Marina ;
Herzfeld, Judith ;
Griffin, Robert G. .
JOURNAL OF MAGNETIC RESONANCE, 2010, 202 (01) :9-13
[9]   Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR [J].
Bajaj, Vikram S. ;
Mak-Jurkauskas, Melody L. ;
Belenky, Marina ;
Herzfeld, Judith ;
Griffin, Robert G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (23) :9244-9249
[10]   High-field dynamic nuclear polarization for solid and solution biological NMR [J].
Barnes, A. B. ;
De Paepe, G. ;
van der Wel, P. C. A. ;
Hu, K. -N. ;
Joo, C. -G. ;
Bajaj, V. S. ;
Mak-Jurkauskas, M. L. ;
Sirigiri, J. R. ;
Herzfeld, J. ;
Temkin, R. J. ;
Griffin, R. G. .
APPLIED MAGNETIC RESONANCE, 2008, 34 (3-4) :237-263