Iterated Boolean Sums of Bernstein Type Operators

被引:4
作者
Acar, Tuncer [1 ]
Aral, Ali [2 ]
Rasa, Ioan [3 ]
机构
[1] Selcuk Univ, Fac Sci, Dept Math, TR-42003 Selcuklu, Konya, Turkey
[2] Kirikkale Univ, Fac Arts & Sci, Dept Math, Kirikkale, Turkey
[3] Tech Univ Cluj Napoca, Cluj Napoca, Romania
关键词
Bernstein polynomials; Boolean sums; iterated operators; LINEAR-COMBINATIONS; EIGENSTRUCTURE; APPROXIMATION; LAGRANGE; LIMITS;
D O I
10.1080/01630563.2020.1777160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The approximation of functions using linear positive operators is affected by saturation. The quality of approximation offered by iterated Boolean sums increases with the regularity of the function. We present some qualitative and quantitative results concerning the approximation by such Boolean sums. The general results are illustrated by examples.
引用
收藏
页码:1515 / 1527
页数:13
相关论文
共 32 条
[21]  
Micchelli C. A., 1969, THESIS
[22]   ASYMPTOTIC PROPERTIES OF POWERS OF BERNSTEIN OPERATORS [J].
NAGEL, J .
JOURNAL OF APPROXIMATION THEORY, 1980, 29 (04) :323-335
[23]  
Naiko D. A., 1987, UKRANIAN MATH J, V39, P583
[24]   ANOTHER LOOK AT VORONOVSKAJA TYPE FORMULAS [J].
Nasaireh, Fadel ;
Rasa, Ioan .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (01) :95-105
[25]  
Occorsio D., 1996, Facta Univ. Ser. Math. Inform. (Nis), V11, P101
[26]  
Occorsio D, 2011, STUD U BABES-BOL MAT, V56, P147
[27]  
Pltnea R, 2007, ANN TIBERIU POPOVICI, V5, P109
[28]  
Rasa I., 2006, Rev. Anal. Numer. Theor. Approx, V35, P111
[29]   LAGRANGE AND LEAST-SQUARES POLYNOMIALS AS LIMITS OF LINEAR-COMBINATIONS OF ITERATES OF BERNSTEIN AND DURRMEYER POLYNOMIALS [J].
SEVY, JC .
JOURNAL OF APPROXIMATION THEORY, 1995, 80 (02) :267-271
[30]  
Vladislav T., 1999, APROXIMARE PROBLEMA