Corrosion resistance of GdPO4 thermal barrier coating candidate in the presence of CMAS+NaVO3 and CMAS

被引:30
作者
Guo, Lei [1 ,2 ]
Feng, Jiayi [1 ]
Meng, Shijun [1 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China
[2] Minist Educ, Tianjin Key Lab Adv Joining Technol, Key Lab Adv Ceram & Machining Technol, Tianjin 300072, Peoples R China
关键词
Thermal barrier coatings; CMAS; CMAS + NaVO 3; Interface reaction layer; Crystalline products; PHASE-EQUILIBRIA; LNPO(4) LN; REPO4; RE; BEHAVIOR; MECHANISM; GD; ND; LA; CONDUCTIVITY; DELAMINATION;
D O I
10.1016/j.corsci.2022.110628
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
GdPO4 is a promising thermal barrier coating (TBC) candidate owing to its excellent resistance to calciummagnesium-alumina-silicate (CMAS) and molten salt corrosion. In this study, the corrosion behavior of GdPO4 in CMAS + molten salt (CN) was investigated and compared with that in CMAS. At 1200 and 1250 degrees C, interface reaction layers rapidly formed on both the CN and CMAS attacked GdPO4 pellets, and many crystalline products were generated in the melts. This effectively increased the melt viscosity and suppressed its penetration. As compared to CMAS, CN was more aggressive to GdPO4 at 1200 degrees C but less at 1250 degrees C.
引用
收藏
页数:10
相关论文
共 49 条
[1]   Hot corrosion behaviour of Gd2O3 doped LaMgAl11O19 thermal barrier coating exposed to molten V2O5 at 900 °C [J].
Cao, Shengjun ;
Sun, Junbin ;
Chen, Ting ;
Wang, Juan ;
Chen, Mansheng ;
Hui, Yu ;
Wang, Jinshuang ;
Li, Wenyi ;
Lu, Weihong .
CERAMICS INTERNATIONAL, 2021, 47 (13) :18792-18799
[2]   Comparative study of EB-PVD gadolinium-zirconate and yttria-rich zirconia coatings performance against Fe-containing calcium-magnesium-aluminosilicate (CMAS) infiltration [J].
Chavez, Juan J. Gomez ;
Naraparaju, Ravisankar ;
Mikulla, Christoph ;
Mechnich, Peter ;
Kelm, Klemens ;
Ramana, C., V ;
Schulz, Uwe .
CORROSION SCIENCE, 2021, 190
[3]   Hot corrosion behaviour of plasma sprayed YSZ/LaMgAl11O19 composite coatings in molten sulfate-vanadate salt [J].
Chen, Xiaolong ;
Zhao, Yu ;
Gu, Lijian ;
Zou, Binglin ;
Wang, Ying ;
Cao, Xueqiang .
CORROSION SCIENCE, 2011, 53 (06) :2335-2343
[4]   Thermal barrier coating materials [J].
Clarke, David R. ;
Phillpot, Simon R. .
MATERIALS TODAY, 2005, 8 (06) :22-29
[5]   Femtosecond laser polishing yttria-stabilized zirconia coatings for improving molten salts corrosion resistance [J].
Fan, Zhengjie ;
Sun, Xiaomao ;
Zhuo, Xueshi ;
Mei, Xuesong ;
Cui, Jianlei ;
Duan, Wenqiang ;
Wang, Wenjun ;
Zhang, Xiaofeng ;
Yang, Lu .
CORROSION SCIENCE, 2021, 184
[6]   Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations [J].
Feng, J. ;
Xiao, B. ;
Zhou, R. ;
Pan, W. .
ACTA MATERIALIA, 2013, 61 (19) :7364-7383
[7]  
Feng J., 2022, CORROS COMMUN, V6, P29
[8]   High temperature oxidation resistance and TGO growth mechanism of laser remelted thermal barrier coatings [J].
Feng, Yang ;
Dong, Tian-shun ;
Li, Guo-lu ;
Wang, Ran ;
Zhao, Xiang-wei ;
Liu, Qi .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 828
[9]   CMAS Corrosion Behavior and Protection Method of Thermal Barrier Coatings for Aeroengine [J].
Guo Lei ;
Gao Yuan ;
Ye Fuxing ;
Zhang Xinmu .
ACTA METALLURGICA SINICA, 2021, 57 (09) :1184-1198
[10]   Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications [J].
Guo, Lei ;
Li, Guang ;
Gan, Zhilin .
JOURNAL OF ADVANCED CERAMICS, 2021, 10 (03) :472-481