GasHis-Transformer: A multi-scale visual transformer approach for gastric histopathological image detection

被引:143
作者
Chen, Haoyuan [1 ]
Li, Chen [1 ]
Wang, Ge [2 ]
Li, Xiaoyan [4 ]
Rahaman, Md Mamunur [1 ,3 ]
Sun, Hongzan [4 ]
Hu, Weiming [1 ]
Li, Yixin [1 ]
Liu, Wanli [1 ]
Sun, Changhao [1 ,5 ]
Ai, Shiliang [1 ]
Grzegorzek, Marcin [6 ]
机构
[1] Northeastern Univ, Coll Med & Biol Informat Engn, Microscop Image & Med Image Anal Grp, Shenyang, Peoples R China
[2] Rensselaer Polytech Inst, Biomed Imaging Ctr, Dept Biomed Engn, Troy, NY 12180 USA
[3] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW, Australia
[4] China Med Univ, Shenyang, Peoples R China
[5] Chinese Acad Sci, Shenyang Inst Automat, Shenyang, Peoples R China
[6] Univ Lubeck, Inst Med Informat, Lubeck, Germany
基金
中国国家自然科学基金;
关键词
Gastric histropathological image; Multi-scale visual transformer; Image detection;
D O I
10.1016/j.patcog.2022.108827
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a multi-scale visual transformer model, referred as GasHis-Transformer, is proposed for Gastric Histopathological Image Detection (GHID), which enables the automatic global detection of gastric cancer images. GasHis-Transformer model consists of two key modules designed to extract global and local information using a position-encoded transformer model and a convolutional neural network with local convolution, respectively. A publicly available hematoxylin and eosin (H&E) stained gastric histopathological image dataset is used in the experiment. Furthermore, a Dropconnect based lightweight network is proposed to reduce the model size and training time of GasHis-Transformer for clinical applications with improved confidence. Moreover, a series of contrast and extended experiments verify the robustness, extensibility and stability of GasHis-Transformer. In conclusion, GasHis-Transformer demonstrates high global detection performance and shows its significant potential in GHID task. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 40 条
[1]   A State-of-the-Art Review for Gastric Histopathology Image Analysis Approaches and Future Development [J].
Ai, Shiliang ;
Li, Chen ;
Li, Xiaoyan ;
Jiang, Tao ;
Grzegorzek, Marcin ;
Sun, Changhao ;
Rahaman, Md Mamunur ;
Zhang, Jinghua ;
Yao, Yudong ;
Li, Hong .
BIOMED RESEARCH INTERNATIONAL, 2021, 2021
[2]   Attention Augmented Convolutional Networks [J].
Bello, Irwan ;
Zoph, Barret ;
Vaswani, Ashish ;
Shlens, Jonathon ;
Le, Quoc V. .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3285-3294
[3]   GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond [J].
Cao, Yue ;
Xu, Jiarui ;
Lin, Stephen ;
Wei, Fangyun ;
Hu, Han .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :1971-1980
[4]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[5]   A comprehensive survey on model compression and acceleration [J].
Choudhary, Tejalal ;
Mishra, Vipul ;
Goswami, Anurag ;
Sarangapani, Jagannathan .
ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (07) :5113-5155
[6]   TransMed: Transformers Advance Multi-Modal Medical Image Classification [J].
Dai, Yin ;
Gao, Yifan ;
Liu, Fayu .
DIAGNOSTICS, 2021, 11 (08)
[7]  
Dosovitskiy A., 2021, P 9 INT C LEARN REPR
[8]   A black-box adversarial attack strategy with adjustable sparsity and generalizability for deep image classifiers [J].
Ghosh, Arka ;
Mullick, Sankha Subhra ;
Datta, Shounak ;
Das, Swagatam ;
Das, Asit Kr ;
Mallipeddi, Rammohan .
PATTERN RECOGNITION, 2022, 122
[9]  
Goodfellow I. J., 2015, ICLR
[10]  
Graham B, 2021, Arxiv, DOI [arXiv:2104.01136, 10.48550/arXiv.2104.01136]