Exploring the effect of context information on deep learning business process predictions

被引:13
作者
Brunk, Jens [1 ]
Stottmeister, Johannes [1 ]
Weinzierl, Sven [2 ]
Matzner, Martin [2 ]
Becker, Joerg [1 ]
机构
[1] Univ Munster, ERCIS, Dept Informat Syst, Munster, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Inst Informat Syst, Nurnberg, Germany
关键词
Predictive process monitoring; deep learning; context-sensitivity; MODELS;
D O I
10.1080/12460125.2020.1790183
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Predictive Process Monitoring (PPM) techniques for predicting the next activity in running business processes developed into an established topic of Business Process Management. Recent research suggests using Deep Neural Networks (DNNs) for PPM because DNNs are good at learning the intricate structure of business processes. Most of these works use Long Short-Term Memory Neural Networks (LSTMs) and consider only the control flow information of an event log. Beyond control flow information, context information can add valuable information to a predictive model. However, the effects of context attributes on the predictive quality have not yet been sufficiently analyzed. This work addresses this gap and provides two insights. First, a context-sensitive prediction capability can improve the predictive quality of an LSTM-based technique. Second, the added value of context information to the quality of predicting the next activity varies in the course of a running process instance.
引用
收藏
页码:328 / 343
页数:16
相关论文
共 20 条
[1]   COMPREHENSIBLE PREDICTIVE MODELS FOR BUSINESS PROCESSES [J].
Breuker, Dominic ;
Matzner, Martin ;
Delfmann, Patrick ;
Becker, Joerg .
MIS QUARTERLY, 2016, 40 (04) :1009-+
[2]  
BRUNK J, 2020, 22 IEEE C BUS INF CB
[3]   Learning Accurate LSTM Models of Business Processes [J].
Camargo, Manuel ;
Dumas, Marlon ;
Gonzalez-Rojas, Oscar .
BUSINESS PROCESS MANAGEMENT (BPM 2019), 2019, 11675 :286-302
[4]   Predictive Process Monitoring Methods: Which One Suits Me Best? [J].
Di Francescomarino, Chiara ;
Ghidini, Chiara ;
Maggi, Fabrizio Maria ;
Milani, Fredrik .
BUSINESS PROCESS MANAGEMENT (BPM 2018), 2018, 11080 :462-479
[5]   An Eye into the Future: Leveraging A-priori Knowledge in Predictive Business Process Monitoring [J].
Di Francescomarino, Chiara ;
Ghidini, Chiara ;
Maggi, Fabrizio Maria ;
Petrucci, Giulio ;
Yeshchenko, Anton .
BUSINESS PROCESS MANAGEMENT, BPM 2017, 2017, 10445 :252-268
[6]  
Dozat T., 2016, Incorporating nesterov momentum into adam
[7]   Predictive Monitoring of Business Processes: A Survey [J].
Eduardo Marquez-Chamorro, Alfonso ;
Resinas, Manuel ;
Ruiz-Cortes, Antonio .
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2018, 11 (06) :962-977
[8]   Predicting process behaviour using deep learning [J].
Evermann, Joerg ;
Rehse, Jana-Rebecca ;
Fettke, Peter .
DECISION SUPPORT SYSTEMS, 2017, 100 :129-140
[9]  
He K, 2016, PROC CVPR IEEE, P770, DOI [10.1109/CVPR.2016.90, DOI 10.1109/CVPR.2016.90]
[10]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]