Object-Based Land Cover Classification Using Airborne Lidar and Different Spectral Images

被引:8
|
作者
Teo, Tee-Ann [1 ]
Huang, Chun-Hsuan [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Civil Engn, Hsinchu, Taiwan
来源
TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES | 2016年 / 27卷 / 04期
关键词
Lidar; Hyperspectral image; WorldView-2; Object-based classification; MULTISPECTRAL IMAGERY; DATA FUSION; VEGETATION;
D O I
10.3319/TAO.2016.01.29.01(ISRS)
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Both land cover spectral information and 3D surface information can be obtained efficiently via remote sensing technologies. Spectral images provide spectral features whereas lidar point clouds contain 3D spatial features. Therefore, the multi sensor data can be integrated to obtain useful information for different applications. This study integrates lidar with different spectral features for land cover classification. Because different spectral images have different characteristics, this study used hyperspectral images, 4- and 8-band WorldView-2 multispectral images, to distinguish different land covers. The major works include features selection, object-based classification, and evaluation. In features selection appropriate features were selected according to the land cover characteristics. Object-based classification was implemented using image segmentation and supervised classification. Finally, different combinations were evaluated using reference data to provide comprehensive analyses. We use ITRES CASI-1500 airborne hyperspectral images, WorldView-2 multispectral images and Optech ALTM Pegasus in this study. The experiment compared the results with and without data fusion. The importance of different spectral features is also discussed. In summary, different land covers with similar spectral features can be identified using lidar spatial features. Spectral image integration with lidar data may improve land cover classification accuracy.
引用
收藏
页码:491 / 504
页数:14
相关论文
共 50 条
  • [1] Object-based land cover classification using airborne LiDAR
    Antonarakis, A. S.
    Richards, K. S.
    Brasington, J.
    REMOTE SENSING OF ENVIRONMENT, 2008, 112 (06) : 2988 - 2998
  • [2] An Object-Based Method for Urban Land Cover Classification Using Airborne Lidar Data
    Chen, Ziyue
    Gao, Bingbo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (10) : 4243 - 4254
  • [3] DISCRETIZATION OF OBJECT-BASED LIDAR FEATURES FOR LAND COVER CLASSIFICATION
    Lin, Yu-Ching
    Lin, Chun-Lin
    Tsai, Ming-Da
    Chou, Lin-Sun
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1768 - 1771
  • [4] Object-Based Tree Species Classification Using Airborne Hyperspectral Images and LiDAR Data
    Wu, Yanshuang
    Zhang, Xiaoli
    FORESTS, 2020, 11 (01):
  • [5] Object-based land cover classification using high-posting-density LiDAR data
    Im, Jungho
    Jensen, John R.
    Hodgson, Michael E.
    GISCIENCE & REMOTE SENSING, 2008, 45 (02) : 209 - 228
  • [6] Object-based forest gaps classification using airborne LiDAR data
    Mao, Xuegang
    Hou, Jiyu
    JOURNAL OF FORESTRY RESEARCH, 2019, 30 (02) : 617 - 627
  • [7] Object-based forest gaps classification using airborne LiDAR data
    Xuegang Mao
    Jiyu Hou
    Journal of Forestry Research, 2019, 30 (02) : 617 - 627
  • [8] Object-based forest gaps classification using airborne LiDAR data
    Xuegang Mao
    Jiyu Hou
    Journal of Forestry Research, 2019, 30 : 617 - 627
  • [9] Object-based classification of land cover and tree species by integrating airborne LiDAR and high spatial resolution imagery data
    Takeshi Sasaki
    Junichi Imanishi
    Keiko Ioki
    Yukihiro Morimoto
    Katsunori Kitada
    Landscape and Ecological Engineering, 2012, 8 : 157 - 171
  • [10] Object-based classification of land cover and tree species by integrating airborne LiDAR and high spatial resolution imagery data
    Sasaki, Takeshi
    Imanishi, Junichi
    Ioki, Keiko
    Morimoto, Yukihiro
    Kitada, Katsunori
    LANDSCAPE AND ECOLOGICAL ENGINEERING, 2012, 8 (02) : 157 - 171