APPROXIMATE GROUPS, II: THE SOLVABLE LINEAR CASE

被引:15
作者
Breuillard, Emmanuel [2 ]
Green, Ben [1 ]
机构
[1] Ctr Math Sci, Cambridge CB3 0WA, England
[2] Univ Paris 11, Lab Math, F-91405 Orsay, France
关键词
D O I
10.1093/qmath/haq011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the structure of 'K-approximate subgroups' of solvable subgroups of GLn(C), showing that they have a large nilpotent piece. By combining this with the main result of our recent paper on approximate subgroups of torsion-free nilpotent groups (E. Breuillard and B.J. Green, Approximate groups, I: the torsion-free nilpotent case, J. Inst. Math. Jussieu, to appear), we show that such approximate subgroups are efficiently controlled by nilpotent progressions.
引用
收藏
页码:513 / 521
页数:9
相关论文
共 16 条
[1]  
[Anonymous], 1998, ELEMENTS MATH BERLIN
[2]   Rectification principles in additive number theory [J].
Bilu, YF ;
Lev, VF ;
Ruzsa, IZ .
DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (03) :343-353
[3]  
BREUILLARD E, J I MATH JU IN PRESS
[4]  
CHANG MC, 2007, CONVOLUTION DISCRETE
[5]   Product theorems in SL2 and SL3 [J].
Chang, Mei-Chu .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2008, 7 (01) :1-25
[6]  
GREEN BJ, NILPOTENT LINEAR GRO
[7]   Growth and generation in SL2(Z/pZ) [J].
Helfgott, H. A. .
ANNALS OF MATHEMATICS, 2008, 167 (02) :601-623
[8]  
HELFGOTT HA, 2008, ARXIV08072027
[9]  
Humphreys J E., 1975, LINEAR ALGEBRAIC GRO, DOI 10.1007/978-1-4684-9443-3
[10]  
Mal'cev AL., 1956, AM MATH SOC TRANSL, V2, P1