Frechet spaces of non-archimedean valued continuous functions

被引:0
作者
Sliwa, Wieslaw [1 ]
机构
[1] Adam Mickiewicz Univ Poznan, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
Non-archimedean Frechet spaces of; continuous functions; Schauder and orthogonal bases in; non-archimedean locally convex spaces; LOCALLY CONVEX-SPACES; ALGEBRAS; FIELDS;
D O I
10.1016/j.jmaa.2011.06.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be an ultraregular space and let K be a complete non-archimedean non-trivially valued field. Assume that the locally convex space E = C(c)(X; K) of all continuous functions from X to K with the topology tau(c) of uniform convergence on compact subsets of X is a Frechet space. We shall prove that E has an orthogonal basis consisting of K-valued characteristic functions of clopen (i.e. closed and open) subsets of X and that it is isomorphic to the product of a countable family of Banach spaces with an orthonormal basis. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:345 / 353
页数:9
相关论文
共 15 条
[1]   RINGS OF CONTINUOUS-FUNCTIONS WITH VALUES IN A TOPOLOGICAL FIELD [J].
BACHMAN, G ;
BECKENSTEIN, E ;
NARICI, L ;
WARNER, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 204 (APR) :91-112
[2]   FUNCTION ALGEBRAS OVER VALUED FIELDS [J].
BACHMAN, G ;
BECKENST.E ;
NARICI, L .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 44 (01) :45-58
[3]  
BECKENSTEIN E, 1973, STUD MATH, V48, P119
[4]   Orthogonal sequences in non-archimedean locally convex spaces [J].
De Grande-De Kimpe, N ;
Kakol, J ;
Perez-Garcia, C ;
Schikhof, W .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2000, 11 (02) :187-195
[5]   EXTENDING CONTINUOUS FUNCTIONS ON ZERO-DIMENSIONAL SPACES [J].
ELLIS, RL .
MATHEMATISCHE ANNALEN, 1970, 186 (02) :114-&
[6]  
Engelking R., 1989, General topology
[7]   LOCALLY CONVEX-SPACES OF NON-ARCHIMEDEAN VALUED CONTINUOUS-FUNCTIONS [J].
GOVAERTS, W .
PACIFIC JOURNAL OF MATHEMATICS, 1983, 109 (02) :399-410
[9]  
KATSARAS AK, 1986, B UNIONE MAT ITAL, V5B, P603
[10]  
Kechris A. S., 1995, Graduate Texts in Mathematics, V156