GLOBAL BIFURCATION OF NONNEGATIVE SOLUTIONS FOR A QUASILINEAR ELLIPTIC PROBLEM

被引:0
作者
Feng, Peng [1 ]
机构
[1] Florida Gulf Coast Univ, Dept Math, Ft Myers, FL 33965 USA
关键词
Bifurcation; positive solutions; singular elliptic equation; POSITIVE SOLUTIONS; THIN-FILM; EXACT MULTIPLICITY; STEADY-STATES; BLOW-UP; UNIQUENESS; SYMMETRY;
D O I
10.1216/RMJ-2011-41-4-1183
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the structure of positive solutions for an m-Laplacian boundary value problem involving singular nonlinearities. We obtain the precise global bifurcation diagram of the solutions.
引用
收藏
页码:1183 / 1193
页数:11
相关论文
共 26 条
[1]  
[Anonymous], 1996, Advances in Diff. Equs.
[2]  
[Anonymous], EXACT MULTIPLICITY B
[3]  
Bertozzi AL, 1998, COMMUN PUR APPL MATH, V51, P625, DOI 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.0.CO
[4]  
2-9
[5]  
Bertozzi AL, 2000, INDIANA U MATH J, V49, P1323
[6]   On a singular nonlinear elliptic equation [J].
Chen, HW .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 29 (03) :337-345
[7]   Symmetry in an elliptic problem and the blow-up set of a quasilinear heat equation. [J].
Cortazar, C ;
Elgueta, M ;
Felmer, P .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (3-4) :507-520
[8]  
Feng P, 2005, ELECTRON J DIFFER EQ
[9]   ON A SINGULAR NONLINEAR ELLIPTIC PROBLEM [J].
GOMES, SM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (06) :1359-1369
[10]  
Guo Z.M., J LONDON MA IN PRESS