RELATIONSHIP BETWEEN CONVOLUTIONAL NEURAL NETWORKS AND F-TRANSFORM

被引:0
作者
Molek, Vojtech [1 ]
Perfilieva, Irina [2 ]
机构
[1] Univ Ostrava, Dept Informat & Comp, CZ-70103 Ostrava, Czech Republic
[2] Univ Ostrava, Inst Res & Applicat Fuzzy Modeling, CZ-70103 Ostrava, Czech Republic
来源
UNCERTAINTY MODELLING IN KNOWLEDGE ENGINEERING AND DECISION MAKING | 2016年 / 10卷
关键词
F-transform; Convolutional neural networks; Image processing; Learning optimization; RECOGNITION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This contribution was prepared for the doctoral consortium. It contains characterisation of the research problem, conventional and proposed techniques and short review of literature. Authors present results of experiments with convolutinal neural networks with a non-standard architecture.
引用
收藏
页码:325 / 328
页数:4
相关论文
共 6 条
[1]  
Ciresan D. C., 2011, IJCAI P INT JOINT C
[3]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[4]   LEARNING REPRESENTATIONS BY BACK-PROPAGATING ERRORS [J].
RUMELHART, DE ;
HINTON, GE ;
WILLIAMS, RJ .
NATURE, 1986, 323 (6088) :533-536
[5]   Deep learning in neural networks: An overview [J].
Schmidhuber, Juergen .
NEURAL NETWORKS, 2015, 61 :85-117
[6]  
Vlasanek P., 2016, J FUZZY SET VALUED A, V54