Best Proximity Points: Optimal Solutions

被引:89
作者
Basha, S. Sadiq [1 ]
机构
[1] Anna Univ, Dept Math, Chennai 600025, Tamil Nadu, India
关键词
Optimal approximate solution; Fixed point; Best proximity point; Contraction; Proximal contraction; QUASI-ASYMPTOTIC CONTRACTIONS; EQUILIBRIUM PAIRS; THEOREMS; APPROXIMATION; CONVERGENCE; EXTENSIONS; EXISTENCE; MULTIFUNCTIONS;
D O I
10.1007/s10957-011-9869-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This article elicits a best proximity point theorem for non-self-proximal contractions. As a consequence, it ascertains the existence of an optimal approximate solution to some equations for which it is plausible that there is no solution. Moreover, an algorithm is exhibited to determine such an optimal approximate solution designated as a best proximity point. It is interesting to observe that the preceding best proximity point theorem includes the famous Banach contraction principle.
引用
收藏
页码:210 / 216
页数:7
相关论文
共 25 条
[1]   Convergence and existence results for best proximity points [J].
Al-Thagafi, M. A. ;
Shahzad, Naseer .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) :3665-3671
[2]   Best Proximity Sets and Equilibrium Pairs for a Finite Family of Multimaps [J].
Al-Thagafi, M. A. ;
Shahzad, Naseer .
FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
[3]   Best proximity pairs and equilibrium pairs for Kakutani multimaps [J].
Al-Thagafi, M. A. ;
Shahzad, Naseer .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (03) :1209-1216
[4]   Proximal pointwise contraction [J].
Anuradha, J. ;
Veeramani, P. .
TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (18) :2942-2948
[5]  
Basha S.S., 1977, Acta Sci. Math. (Szeged), V63, P289
[6]   Extensions of Banach's Contraction Principle [J].
Basha, S. Sadiq .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (05) :569-576
[7]  
Basha SS, 2000, J APPROX THEORY, V103, P119
[8]  
Basha SS, 2001, INDIAN J PURE AP MAT, V32, P1237
[9]   Best proximity points for cyclic Meir-Keeler contractions [J].
Di Bari, Cristina ;
Suzuki, Tomonari ;
Vetro, Calogero .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) :3790-3794
[10]   Existence and convergence of best proximity points [J].
Eldred, A. Anthony ;
Veeramani, P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) :1001-1006