Entanglement of midspectrum eigenstates of chaotic many-body systems: Reasons for deviation from random ensembles

被引:38
作者
Haque, Masudul [1 ,2 ,3 ]
McClarty, Paul A. [2 ]
Khaymovich, Ivan M. [2 ,4 ]
机构
[1] Maynooth Univ, Dept Theoret Phys, Maynooth, Kildare, Ireland
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[3] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
[4] Russian Acad Sci, Inst Phys Microstruct, GSP 105, Nizhnii Novgorod 603950, Russia
基金
俄罗斯科学基金会;
关键词
STATISTICAL-MECHANICS; QUANTUM; THERMALIZATION; LAW;
D O I
10.1103/PhysRevE.105.014109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Eigenstates of local many-body interacting systems that are far from spectral edges are thought to be ergodic and close to being random states. This is consistent with the eigenstate thermalization hypothesis and volume-law scaling of entanglement. We point out that systematic departures from complete randomness are generically present in midspectrum eigenstates, and focus on the departure of the entanglement entropy from the randomstate prediction. We show that the departure is (partly) due to spatial correlations and due to orthogonality to the eigenstates at the spectral edge, which imposes structure on the midspectrum eigenstates.
引用
收藏
页数:8
相关论文
共 120 条
[1]   Eigenstate thermalization hypothesis and integrability in quantum spin chains [J].
Alba, Vincenzo .
PHYSICAL REVIEW B, 2015, 91 (15)
[2]   Entanglement entropy of excited states [J].
Alba, Vincenzo ;
Fagotti, Maurizio ;
Calabrese, Pasquale .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
[3]   Entanglement of Low-Energy Excitations in Conformal Field Theory [J].
Alcaraz, Francisco Castilho ;
Ibanez Berganza, Miguel ;
Sierra, German .
PHYSICAL REVIEW LETTERS, 2011, 106 (20)
[4]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[5]   Excited state entanglement in homogeneous fermionic chains [J].
Ares, F. ;
Esteve, J. G. ;
Falceto, F. ;
Sanchez-Burillo, E. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (24)
[6]   Multifractal dimensions for random matrices, chaotic quantum maps, and many-body systems [J].
Baecker, Arnd ;
Haque, Masudul ;
Khaymovich, Ivan M. .
PHYSICAL REVIEW E, 2019, 100 (03)
[7]   Scaling functions for eigenstate entanglement crossovers in harmonic lattices [J].
Barthel, Thomas ;
Miao, Qiang .
PHYSICAL REVIEW A, 2021, 104 (02)
[8]   Global characteristics of all eigenstates of local many-body Hamiltonians: participation ratio and entanglement entropy [J].
Beugeling, W. ;
Andreanov, A. ;
Haque, Masudul .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015,
[9]   Statistical properties of eigenstate amplitudes in complex quantum systems [J].
Beugeling, Wouter ;
Baecker, Arnd ;
Moessner, Roderich ;
Haque, Masudul .
PHYSICAL REVIEW E, 2018, 98 (02)
[10]   Power-law random banded matrices and ultrametric matrices: Eigenvector distribution in the intermediate regime [J].
Bogomolny, E. ;
Sieber, M. .
PHYSICAL REVIEW E, 2018, 98 (04)