Impact of drought stress on morphological and yield components in maize (Zea mays L.)

被引:0
|
作者
Sellamuthu, Ramya [1 ]
Dhanarajan, Arulbalachandran [1 ]
Marimuthu, Ramachandran [1 ]
机构
[1] Periyar Univ, Sch Life Sci, Dept Bot, Salem, Tamil Nadu, India
来源
RESEARCH JOURNAL OF BIOTECHNOLOGY | 2022年 / 17卷 / 10期
关键词
Antioxidant; Drought stress; Yield characters; Reactive oxygen species; Zea mays; INDUCED OXIDATIVE STRESS; SHORT-TERM DROUGHT; WATER-DEFICIT; OSMOTIC ADJUSTMENT; SALICYLIC-ACID; RESPONSES; PHOTOSYNTHESIS; GROWTH; METABOLISM; SALINITY;
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Maize (Zea mays L.) is a major grain crop cultivated around the world. It is useful as a bio fuel as well as for human and animal nutrition. Increased abiotic and biotic stress events have been documented in many regions of the world as a direct result of global climate change, posing a threat to worldwide maize harvests. One of the most environmental factors is drought that affects maize crop growth, development and yield. Plants have evolved dynamic physiological, biochemical and molecular reactions that enable them to escape, avoid and survive harmful environmental conditions. Drought, more than any other abiotic stress, is a significant cause of decreasing crop yields. Maize plants, as one of the most widely distributed crops, are regularly subjected to drought stress, resulting in significant losses in final kernel yield. Plants drought stressful events included tissue and developmental stage specific characteristics. These data suggest that induced stress reduced yield by reducing plant development and yield parameters as compared to control plants. As a result, these biochemical characteristics and physiological responses may be important in the development of drought tolerance genotypes that can withstand water deficits while retaining a high yield.
引用
收藏
页码:77 / 85
页数:9
相关论文
共 50 条
  • [21] Correlations between the seed fractions and the yield components of hybrid maize (Zea mays L.)
    Záborszky, S
    Berzy, T
    NOVENYTERMELES, 1999, 48 (06): : 591 - 599
  • [22] Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress
    Caixia Sun
    Xiaoxiao Gao
    Jianqi Fu
    Jiahao Zhou
    Xiaofei Wu
    Plant and Soil, 2015, 388 : 99 - 117
  • [23] Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought
    Chugh, Vishal
    Kaur, Narinder
    Gupta, Anil K.
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 2011, 48 (01): : 47 - 53
  • [24] Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.)
    Cao, Liru
    Lu, Xiaomin
    Wang, Guorui
    Zhang, Pengyu
    Fu, Jiaxu
    Wang, Zhenhua
    Wei, Li
    Wang, Tongchao
    MOLECULAR GENETICS AND GENOMICS, 2021, 296 (06) : 1203 - 1219
  • [25] Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress
    Sun, Caixia
    Gao, Xiaoxiao
    Fu, Jianqi
    Zhou, Jiahao
    Wu, Xiaofei
    PLANT AND SOIL, 2015, 388 (1-2) : 99 - 117
  • [26] Maize (Zea mays L.) landraces classified by drought stress tolerance at the seedling stage
    Gonzalez-Hernandez, Victor A.
    Lugo-Cruz, Eleazar
    Mendoza-Onofre, Leopoldo E.
    Santacruz-Varela, Amalio
    Alejandra Gutierrez-Espinosa, Ma
    Zavala-Garcia, Francisco
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2021, 33 (01): : 29 - 36
  • [27] Role of polyamines and phospholipase D in maize (Zea mays L.) response to drought stress
    An, Z. F.
    Li, C. Y.
    Zhang, L. X.
    Alva, A. K.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2012, 83 : 145 - 150
  • [28] Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.)
    Liru Cao
    Xiaomin Lu
    Guorui Wang
    Pengyu Zhang
    Jiaxu Fu
    Zhenhua Wang
    Li Wei
    Tongchao Wang
    Molecular Genetics and Genomics, 2021, 296 : 1203 - 1219
  • [29] Selection of various synthetic Maize (Zea mays L.) genotypes on drought stress condition
    Farid, M.
    Musa, Y.
    Nasaruddin
    Ridwan, I.
    1ST INTERNATIONAL CONFERENCE ON GLOBAL ISSUE FOR INFRASTRUCTURE, ENVIRONMENT & SOCIO-ECONOMIC DEVELOPMENT, 2019, 235
  • [30] Yield and yield components of hybrid corn (Zea mays L.) as affected by mycorrhizal symbiosis and zinc sulfate under drought stress
    Sajedi N.A.
    Ardakani M.R.
    Rejali F.
    Mohabbati F.
    Miransari M.
    Physiology and Molecular Biology of Plants, 2010, 16 (4) : 343 - 351