Antisite defect qubits in monolayer transition metal dichalcogenides

被引:54
作者
Tsai, Jeng-Yuan [1 ]
Pan, Jinbo [1 ]
Lin, Hsin [2 ]
Bansil, Arun [3 ]
Yan, Qimin [1 ]
机构
[1] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA
[2] Acad Sinica, Inst Phys, Taipei, Taiwan
[3] Northeastern Univ, Phys Dept, Boston, MA 02115 USA
关键词
AB-INITIO; QUANTUM;
D O I
10.1038/s41467-022-28133-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Two-dimensional materials offer a promising platform for scalable solid-state spin qubit. Here, using high-throughput ab initio simulations, the authors identify suitable defect centers in monolayer group-VI transition metal dichalcogenides and assess their potential as qubits. Being atomically thin and amenable to external controls, two-dimensional (2D) materials offer a new paradigm for the realization of patterned qubit fabrication and operation at room temperature for quantum information sciences applications. Here we show that the antisite defect in 2D transition metal dichalcogenides (TMDs) can provide a controllable solid-state spin qubit system. Using high-throughput atomistic simulations, we identify several neutral antisite defects in TMDs that lie deep in the bulk band gap and host a paramagnetic triplet ground state. Our in-depth analysis reveals the presence of optical transitions and triplet-singlet intersystem crossing processes for fingerprinting these defect qubits. As an illustrative example, we discuss the initialization and readout principles of an antisite qubit in WS2, which is expected to be stable against interlayer interactions in a multilayer structure for qubit isolation and protection in future qubit-based devices. Our study opens a new pathway for creating scalable, room-temperature spin qubits in 2D TMDs.
引用
收藏
页数:9
相关论文
共 61 条
[1]   QUANTUM MATERIALS Quantum emitters in two dimensions [J].
Aharonovich, Igor ;
Toth, Milos .
SCIENCE, 2017, 358 (6360) :170-171
[2]   First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres [J].
Alkauskas, Audrius ;
Buckley, Bob B. ;
Awschalom, David D. ;
Van de Walle, Chris G. .
NEW JOURNAL OF PHYSICS, 2014, 16
[3]   Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure [J].
Ataca, C. ;
Sahin, H. ;
Ciraci, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (16) :8983-8999
[4]   Quantum defects by design [J].
Bassett, Lee C. ;
Alkauskas, Audrius ;
Exarhos, Annemarie L. ;
Fu, Kai-Mei C. .
NANOPHOTONICS, 2019, 8 (11) :1867-1888
[5]  
Bharath R., 2011, CHOICE CURR REV ACAD, V49, P345
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2 [J].
Chernikov, Alexey ;
Berkelbach, Timothy C. ;
Hill, Heather M. ;
Rigosi, Albert ;
Li, Yilei ;
Aslan, Ozgur Burak ;
Reichman, David R. ;
Hybertsen, Mark S. ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[8]   Mechanism for optical initialization of spin in NV- center in diamond [J].
Choi, SangKook ;
Jain, Manish ;
Louie, Steven G. .
PHYSICAL REVIEW B, 2012, 86 (04)
[9]  
Christle DJ, 2015, NAT MATER, V14, P160, DOI [10.1038/NMAT4144, 10.1038/nmat4144]
[10]   Spin-orbit-coupled quantum wires and Majorana fermions on zigzag edges of monolayer transition-metal dichalcogenides [J].
Chu, Rui-Lin ;
Liu, Gui-Bin ;
Yao, Wang ;
Xu, Xiaodong ;
Xiao, Di ;
Zhang, Chuanwei .
PHYSICAL REVIEW B, 2014, 89 (15)