Fusion Gene Detection Using Whole-Exome Sequencing Data in Cancer Patients

被引:4
作者
Deng, Wenjiang [1 ]
Murugan, Sarath [1 ]
Lindberg, Johan [1 ]
Chellappa, Venkatesh [1 ]
Shen, Xia [1 ,2 ,3 ]
Pawitan, Yudi [1 ]
Vu, Trung Nghia [1 ]
机构
[1] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden
[2] Fudan Univ, Greater Bay Area Inst Precis Med, Biostat Grp, Guangzhou, Peoples R China
[3] Univ Edinburgh, Usher Inst, Ctr Global Hlth Res, Edinburgh, Midlothian, Scotland
基金
瑞典研究理事会;
关键词
fusion gene; acute myeloid leukemia; whole exome sequencing; prostate cancer; discordant read; split read; READ ALIGNMENT;
D O I
10.3389/fgene.2022.820493
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Several fusion genes are directly involved in the initiation and progression of cancers. Numerous bioinformatics tools have been developed to detect fusion events, but they are mainly based on RNA-seq data. The whole-exome sequencing (WES) represents a powerful technology that is widely used for disease-related DNA variant detection. In this study, we build a novel analysis pipeline called Fuseq-WES to detect fusion genes at DNA level based on the WES data. The same method applies also for targeted panel sequencing data. We assess the method to real datasets of acute myeloid leukemia (AML) and prostate cancer patients. The result shows that two of the main AML fusion genes discovered in RNA-seq data, PML-RARA and CBFB-MYH11, are detected in the WES data in 36 and 63% of the available samples, respectively. For the targeted deep-sequencing of prostate cancer patients, detection of the TMPRSS2-ERG fusion, which is the most frequent chimeric alteration in prostate cancer, is 91% concordant with a manually curated procedure based on four other methods. In summary, the overall results indicate that it is challenging to detect fusion genes in WES data with a standard coverage of similar to 15-30x, where fusion candidates discovered in the RNA-seq data are often not detected in the WES data and vice versa. A subsampling study of the prostate data suggests that a coverage of at least 75x is necessary to achieve high accuracy.
引用
收藏
页数:8
相关论文
共 43 条
  • [1] Review of Current Methods, Applications, and Data Management for the Bioinformatics Analysis of Whole Exome Sequencing
    Bao, Riyue
    Huang, Lei
    Andrade, Jorge
    Tan, Wei
    Kibbe, Warren A.
    Jiang, Hongmei
    Feng, Gang
    [J]. CANCER INFORMATICS, 2014, 13 : 67 - 82
  • [2] NGSUtils: a software suite for analyzing and manipulating next-generation sequencing datasets
    Breese, Marcus R.
    Liu, Yunlong
    [J]. BIOINFORMATICS, 2013, 29 (04) : 494 - 496
  • [3] The Somatic Genomic Landscape of Glioblastoma
    Brennan, Cameron W.
    Verhaak, Roel G. W.
    McKenna, Aaron
    Campos, Benito
    Noushmehr, Houtan
    Salama, Sofie R.
    Zheng, Siyuan
    Chakravarty, Debyani
    Sanborn, J. Zachary
    Berman, Samuel H.
    Beroukhim, Rameen
    Bernard, Brady
    Wu, Chang-Jiun
    Genovese, Giannicola
    Shmulevich, Ilya
    Barnholtz-Sloan, Jill
    Zou, Lihua
    Vegesna, Rahulsimham
    Shukla, Sachet A.
    Ciriello, Giovanni
    Yung, W. K.
    Zhang, Wei
    Sougnez, Carrie
    Mikkelsen, Tom
    Aldape, Kenneth
    Bigner, Darell D.
    Van Meir, Erwin G.
    Prados, Michael
    Sloan, Andrew
    Black, Keith L.
    Eschbacher, Jennifer
    Finocchiaro, Gaetano
    Friedman, William
    Andrews, David W.
    Guha, Abhijit
    Iacocca, Mary
    O'Neill, Brian P.
    Foltz, Greg
    Myers, Jerome
    Weisenberger, Daniel J.
    Penny, Robert
    Kucherlapati, Raju
    Perou, Charles M.
    Hayes, D. Neil
    Gibbs, Richard
    Marra, Marco
    Mills, Gordon B.
    Lander, Eric
    Spellman, Paul
    Wilson, Richard
    [J]. CELL, 2013, 155 (02) : 462 - 477
  • [4] Next Generation Sequencing for Gene Fusion Analysis in Lung Cancer: A Literature Review
    Bruno, Rossella
    Fontanini, Gabriella
    [J]. DIAGNOSTICS, 2020, 10 (08)
  • [5] GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly
    Cameron, Daniel L.
    Schroder, Jan
    Penington, Jocelyn Sietsma
    Do, Hongdo
    Molania, Ramyar
    Dobrovic, Alexander
    Speed, Terence P.
    Papenfuss, Anthony T.
    [J]. GENOME RESEARCH, 2017, 27 (12) : 2050 - 2060
  • [6] State-of-the-Art Fusion-Finder Algorithms Sensitivity and Specificity
    Carrara, Matteo
    Beccuti, Marco
    Lazzarato, Fulvio
    Cavallo, Federica
    Cordero, Francesca
    Donatelli, Susanna
    Calogero, Raffaele A.
    [J]. BIOMED RESEARCH INTERNATIONAL, 2013, 2013
  • [7] Genomic amplification of BCR-ABL1 fusion gene and its impact on the disease progression mechanism in patients with chronic myelogenous leukemia
    Chandran, Ramachandran Krishna
    Geetha, Narayanan
    Sakthivel, Kunnathur Murugesan
    Aswathy, Chandran Geetha
    Gopinath, Preethi
    Raj, Thampirajan Vimaladevi Akhila
    Priya, Geetha
    Nair, Jagathnath Krishna Kumarapillai Mohanan
    Sreedharan, Hariharan
    [J]. GENE, 2019, 686 : 85 - 91
  • [8] Comprehensive molecular profiling of lung adenocarcinoma
    Collisson, Eric A.
    Campbell, Joshua D.
    Brooks, Angela N.
    Berger, Alice H.
    Lee, William
    Chmielecki, Juliann
    Beer, David G.
    Cope, Leslie
    Creighton, Chad J.
    Danilova, Ludmila
    Ding, Li
    Getz, Gad
    Hammerman, Peter S.
    Hayes, D. Neil
    Hernandez, Bryan
    Herman, James G.
    Heymach, John V.
    Jurisica, Igor
    Kucherlapati, Raju
    Kwiatkowski, David
    Ladanyi, Marc
    Robertson, Gordon
    Schultz, Nikolaus
    Shen, Ronglai
    Sinha, Rileen
    Sougnez, Carrie
    Tsao, Ming-Sound
    Travis, William D.
    Weinstein, John N.
    Wigle, Dennis A.
    Wilkerson, Matthew D.
    Chu, Andy
    Cherniack, Andrew D.
    Hadjipanayis, Angela
    Rosenberg, Mara
    Weisenberger, Daniel J.
    Laird, Peter W.
    Radenbaugh, Amie
    Ma, Singer
    Stuart, Joshua M.
    Byers, Lauren Averett
    Baylin, Stephen B.
    Govindan, Ramaswamy
    Meyerson, Matthew
    Rosenberg, Mara
    Gabriel, Stacey B.
    Cibulskis, Kristian
    Sougnez, Carrie
    Kim, Jaegil
    Stewart, Chip
    [J]. NATURE, 2014, 511 (7511) : 543 - 550
  • [9] JAFFA: High sensitivity transcriptome-focused fusion gene detection
    Davidson, Nadia M.
    Majewski, Ian J.
    Oshlack, Alicia
    [J]. GENOME MEDICINE, 2015, 7
  • [10] ABL1 fusion genes in hematological malignancies: a review
    De Braekeleer, Etienne
    Douet-Guilbert, Nathalie
    Rowe, David
    Bown, Nick
    Morel, Frederic
    Berthou, Christian
    Ferec, Claude
    De Braekeleer, Marc
    [J]. EUROPEAN JOURNAL OF HAEMATOLOGY, 2011, 86 (05) : 361 - 371