Harmonic Analysis of Translation Invariant Valuations

被引:84
作者
Alesker, Semyon [1 ]
Bernig, Andreas [2 ]
Schuster, Franz E. [3 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
[2] Goethe Univ Frankfurt, Inst Math, D-60054 Frankfurt, Germany
[3] TU Wien, Inst Diskrete Math & Geometrie, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Valuation; algebraic integral geometry; tensor valuation; isoperimetric inequality; AFFINE ISOPERIMETRIC-INEQUALITIES; DUAL MIXED VOLUMES; CONVEX-BODIES; INTERSECTION BODIES; INTEGRAL GEOMETRY; PROJECTION BODIES; MINKOWSKI VALUATIONS; SETS; MANIFOLDS; SPACES;
D O I
10.1007/s00039-011-0125-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The decomposition of the space of continuous and translation-invariant valuations into a sum of SO(n) irreducible subspaces is obtained. A reformulation of this result in terms of a Hadwiger-type theorem for continuous translation-invariant and SO(n)-equivariant tensor valuations is also given. As an application, symmetry properties of rigid-motion invariant and homogeneous bivaluations are established and then used to prove new inequalities of Brunn-Minkowski type for convex body valued valuations.
引用
收藏
页码:751 / 773
页数:23
相关论文
共 53 条
[1]   Projection bodies in complex vector spaces [J].
Abardia, Judit ;
Bernig, Andreas .
ADVANCES IN MATHEMATICS, 2011, 227 (02) :830-846
[2]  
ADAMS JF, 1969, LECT LIE GROUPS
[3]   Range characterization of the cosine transform on higher Grassmannians [J].
Alesker, S ;
Bernstein, J .
ADVANCES IN MATHEMATICS, 2004, 184 (02) :367-379
[4]   The multiplicative structure on continuous polynomial valuations [J].
Alesker, S .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (01) :1-26
[5]   Description of continuous isometry covariant valuations on convex sets [J].
Alesker, S .
GEOMETRIAE DEDICATA, 1999, 74 (03) :241-248
[6]   Continuous rotation invariant valuations on convex sets [J].
Alesker, S .
ANNALS OF MATHEMATICS, 1999, 149 (03) :977-1005
[7]  
Alesker S, 2003, J DIFFER GEOM, V63, P63
[8]   Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture [J].
Alesker, S .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (02) :244-272
[9]   Theory of valuations on manifolds, I. Linear spaces [J].
Alesker, Semyon .
ISRAEL JOURNAL OF MATHEMATICS, 2006, 156 (1) :311-339
[10]   A fourier-type transform on translation-invariant valuations on convex sets [J].
Alesker, Semyon .
ISRAEL JOURNAL OF MATHEMATICS, 2011, 181 (01) :189-294