A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem

被引:38
作者
Bi, Hai [1 ]
Yang, Yidu [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
基金
中国国家自然科学基金;
关键词
The Steklov eigenvalue problem; Nonconforming Crouzeix-Raviart element; Two-grid discretization scheme; Spectral approximation; Error estimate; FINITE-ELEMENT; DISCRETIZATION SCHEME; EQUATIONS; APPROXIMATIONS; VIBRATIONS;
D O I
10.1016/j.amc.2011.04.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses a high efficient scheme for the Steklov eigenvalue problem. A two-grid discretization scheme of nonconforming Crouzeix-Raviart element is established. With this scheme, the solution of a Steklov eigenvalue problem on a fine grid pi(h) is reduced to the solution of the eigenvalue problem on a much coarser grid pi(H) and the solution of a linear algebraic system on the fine grid pi(h). By using spectral approximation theory and Nitsche-Lascaux-Lesaint technique in space H(-1/2)(partial derivative Omega), we prove that the resulting solution obtained by our scheme can maintain an asymptotically optimal accuracy by taking H = root h p. And the numerical experiments indicate that when the eigenvalues lambda(k,h) of nonconforming Crouzeix-Raviart element approximate the exact eigenvalues from below, the approximate eigenvalues lambda*(k,h) obtained by the two-grid discretization scheme also approximate the exact ones from below, and the accuracy of lambda*(k,h) is higher than that of lambda(k,h). (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:9669 / 9678
页数:10
相关论文
共 26 条
[2]   Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods [J].
Alonso, Ana ;
Dello Russo, Anahi .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (01) :177-197
[3]   Isoparametric finite-element approximation of a Steklov eigenvalue problem [J].
Andreev, AB ;
Todorov, TD .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (02) :309-322
[4]  
[Anonymous], 2002, TEXTS APPL MATH
[5]   A posteriori error estimates for the Steklov eigenvalue problem [J].
Armentano, Maria G. ;
Padra, Claudio .
APPLIED NUMERICAL MATHEMATICS, 2008, 58 (05) :593-601
[6]  
Bermúdez A, 2000, NUMER MATH, V87, P201, DOI 10.1007/S002110000175
[7]  
Bramble J.H., 1972, MATH FDN FINITE ELEM, P387
[8]  
Chen J. H., 2009, J COMPUT MATH, V27, P1951
[9]   A two-grid discretization scheme for semilinear elliptic eigenvalue problems [J].
Chien, CS ;
Jeng, BW .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (04) :1287-1304
[10]  
Conca C., 1995, FLUID PERIODIC STRUC