Electron self-energy in QED at two loops revisited

被引:28
作者
Hoenemann, Ina [1 ]
Tempest, Kirsten [1 ,2 ]
Weinzierl, Stefan [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, Inst Phys, D-55099 Mainz, Germany
[2] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada
关键词
2-LOOP QCD CORRECTIONS; DIFFERENTIAL-EQUATIONS; NUMERICAL EVALUATION; FEYNMAN-INTEGRALS; MASTER INTEGRALS; 3-LOOP RELATION; SUNRISE GRAPH; MASS; RENORMALIZATION; (MS)OVER-BAR;
D O I
10.1103/PhysRevD.98.113008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We reconsider the two-loop electron self-energy in quantum electrodynamics. We present a modern calculation, where all relevant two-loop integrals are expressed in terms of iterated integrals of modular forms. As boundary points of the iterated integrals, we consider the four cases p(2) = 0, p(2) = m(2), p(2) = 9m(2) and p(2) = infinity. The iterated integrals have q-expansions, which can be used for the numerical evaluation. We show that a truncation of the q-series to order O(q(30)) gives numerically, for the finite part of the self-energy, a relative precision better than 10(-20) for all real values p(2)/m(2).
引用
收藏
页数:27
相关论文
共 85 条
[1]   Iterated elliptic and hypergeometric integrals for Feynman diagrams [J].
Ablinger, J. ;
Bluemlein, J. ;
De Freitas, A. ;
van Hoeij, M. ;
Imamoglu, E. ;
Raab, C. G. ;
Radu, C. -S. ;
Schneider, C. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
[2]   Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra [J].
Ablinger, J. ;
Behring, A. ;
Bluemlein, J. ;
De Freitas, A. ;
von Manteuffel, A. ;
Schneider, C. .
COMPUTER PHYSICS COMMUNICATIONS, 2016, 202 :33-112
[3]  
Ablinger J., ARXIV181012261
[4]   Analytic results for the planar double box integral relevant to top-pair production with a closed top loop [J].
Adams, Luise ;
Chaubey, Ekta ;
Weinzierl, Stefan .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (10)
[5]   Planar Double Box Integral for Top Pair Production with a Closed Top Loop to all orders in the Dimensional Regularization Parameter [J].
Adams, Luise ;
Chaubey, Ekta ;
Weinzierl, Stefan .
PHYSICAL REVIEW LETTERS, 2018, 121 (14)
[6]   Feynman integrals and iterated integrals of modular forms [J].
Adams, Luise ;
Weinzierl, Stefan .
COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2018, 12 (02) :193-251
[7]   The ε-form of the differential equations for Feynman integrals in the elliptic case [J].
Adams, Luise ;
Weinzierl, Stefan .
PHYSICS LETTERS B, 2018, 781 :270-278
[8]   Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms [J].
Adams, Luise ;
Chaubey, Ekta ;
Weinzierl, Stefan .
PHYSICAL REVIEW LETTERS, 2017, 118 (14)
[9]   The kite integral to all orders in terms of elliptic polylogarithms [J].
Adams, Luise ;
Bogner, Christian ;
Schweitzer, Armin ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (12)
[10]   The iterated structure of the all-order result for the two-loop sunrise integral [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (03)