Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic Rk actions

被引:0
作者
Damjanovic, D
Katok, A
机构
[1] Erwin Schroedinger Inst, A-1090 Vienna, Austria
[2] Penn State Univ, University Pk, PA 16802 USA
关键词
cocycles; rigidity; Weyl chamber flow; partial hyperbolicity;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a proof of cocycle rigidity in Holder and smooth categories for Cartan actions on SL(n,R)/F and SL(n,(C)/F for n >= 3 and Gamma cocompact lattice, and for restrictions of those actions to subspaces which contain a two-dimensional plane in general position. This proof does not use harmonic analysis, it relies completely on the structure of stable and unstable foliations of the action. The key new ingredient is the use of the description of generating relations in the group SLn.
引用
收藏
页码:985 / 1005
页数:21
相关论文
共 19 条
[1]  
BRIN M., 1974, MATH USSR IZV, V38, p[170, 177]
[2]   Local rigidity of actions of higher rank Abelian groups and Kam method [J].
Damjanovic, D ;
Katok, A .
ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 10 :142-154
[3]   Local Rigidity of Partially Hyperbolic Actions. II: The Geometric Method and Restrictions of Weyl Chamber Flows on SL(n, R)/Γ [J].
Damjanovic, Danijela ;
Katok, Anatole .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (19) :4405-4430
[4]  
FERLEGER S, UNPUB NONCOMMUTATIVE
[5]  
Guysinsky M, 1998, MATH RES LETT, V5, P149
[6]  
Hirsch M. W., 1977, LECT NOTES MATH, V583
[7]  
KALININ B, CLASSIFICATION CARTA
[8]  
Katok A, 1996, MATH RES LETT, V3, P191
[9]  
Katok A, 1994, MATH RES LETT, V1, P193
[10]   Non-abelian cohomology of abelian Anosov actions [J].
Katok, A ;
Nitica, V ;
Török, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 :259-288