Integrated Analysis of Multiple Microarray Datasets Identifies a Reproducible Survival Predictor in Ovarian Cancer

被引:26
作者
Konstantinopoulos, Panagiotis A. [1 ]
Cannistra, Stephen A. [1 ]
Fountzilas, Helen [1 ]
Culhane, Aedin [2 ]
Pillay, Kamana [1 ]
Rueda, Bo [3 ]
Cramer, Daniel [4 ]
Seiden, Michael [5 ]
Birrer, Michael [6 ]
Coukos, George [7 ]
Zhang, Lin [7 ]
Quackenbush, John [2 ,8 ]
Spentzos, Dimitrios [1 ]
机构
[1] Harvard Univ, Beth Israel Deaconess Med Ctr, Div Hematol Oncol, Dept Med,Sch Med, Boston, MA 02215 USA
[2] Harvard Univ, Dept Biostat & Computat Biol, Dana Farber Canc Inst, Dept Biostat,Sch Publ Hlth, Boston, MA 02215 USA
[3] Harvard Univ, Dept Obstet Gynecol & Reprod Biol, Massachusetts Gen Hosp, Sch Med, Boston, MA 02215 USA
[4] Harvard Univ, Dept Obstet Gynecol & Reprod Biol, Brigham & Womens Hosp, Sch Med, Boston, MA 02215 USA
[5] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA
[6] Harvard Univ, Div Gynecol Med Oncol, Massachusetts Gen Hosp, Sch Med, Boston, MA 02215 USA
[7] Univ Penn, Dept Gynecol Oncol, Philadelphia, PA 19104 USA
[8] Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA
关键词
GENE-EXPRESSION; GENOMIC SIGNATURES; STAGE-III; PACLITAXEL; CISPLATIN; PATTERNS; PATHWAY; CELL; CARBOPLATIN; CARCINOMA;
D O I
10.1371/journal.pone.0018202
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Public data integration may help overcome challenges in clinical implementation of microarray profiles. We integrated several ovarian cancer datasets to identify a reproducible predictor of survival. Methodology/Principal Findings: Four microarray datasets from different institutions comprising 265 advanced stage tumors were uniformly reprocessed into a single training dataset, also adjusting for inter-laboratory variation ("batcheffect"). Supervised principal component survival analysis was employed to identify prognostic models. Models were independently validated in a 61-patient cohort using a custom array genechip and a publicly available 229-array dataset. Molecular correspondence of high-and low-risk outcome groups between training and validation datasets was demonstrated using Subclass Mapping. Previously established molecular phenotypes in the 2(nd) validation set were correlated with high and low-risk outcome groups. Functional representational and pathway analysis was used to explore gene networks associated with high and low risk phenotypes. A 19-gene model showed optimal performance in the training set (median OS 31 and 78 months, p < 0.01), 1(st) validation set (median OS 32 months versus not-yet-reached, p=0.026) and 2(nd) validation set (median OS 43 versus 61 months, p=0.013) maintaining independent prognostic power in multivariate analysis. There was strong molecular correspondence of the respective high-and low-risk tumors between training and 1(st) validation set. Low and high-risk tumors were enriched for favorable and unfavorable molecular subtypes and pathways, previously defined in the public 2(nd) validation set. Conclusions/Significance: Integration of previously generated cancer microarray datasets may lead to robust and widely applicable survival predictors. These predictors are not simply a compilation of prognostic genes but appear to track true molecular phenotypes of good-and poor-outcome.
引用
收藏
页数:12
相关论文
共 34 条
[1]   Intraperitoneal cisplatin and paclitaxel in ovarian cancer [J].
Armstrong, DK ;
Bundy, B ;
Wenzel, L ;
Huang, HQ ;
Baergen, R ;
Lele, S ;
Copeland, LJ ;
Walker, JL ;
Burger, RA .
NEW ENGLAND JOURNAL OF MEDICINE, 2006, 354 (01) :34-43
[2]   Run batch effects potentially compromise the usefulness of genomic signatures for ovarian cancer [J].
Baggerly, Keith A. ;
Coombes, Kevin R. ;
Neeley, E. Shannon .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (07) :1186-1187
[3]   Semi-supervised methods to predict patient survival from gene expression data [J].
Bair, E ;
Tibshirani, R .
PLOS BIOLOGY, 2004, 2 (04) :511-522
[4]   Comparative analysis of algorithms for signal quantitation from oligonucleotide microarrays [J].
Barash, Y ;
Dehan, E ;
Krupsky, M ;
Franklin, W ;
Geraci, M ;
Friedman, N ;
Kaminski, N .
BIOINFORMATICS, 2004, 20 (06) :839-846
[5]   Patterns of gene expression that characterize long-term survival in advanced stage serous ovarian cancers [J].
Berchuck, A ;
Iversen, ES ;
Lancaster, JM ;
Pittman, J ;
Luo, JQ ;
Lee, P ;
Murphy, S ;
Dressman, HK ;
Febbo, PG ;
West, M ;
Nevins, JR ;
Marks, JR .
CLINICAL CANCER RESEARCH, 2005, 11 (10) :3686-3696
[6]   Oncogenic pathway signatures in human cancers as a guide to targeted therapies [J].
Bild, AH ;
Yao, G ;
Chang, JT ;
Wang, QL ;
Potti, A ;
Chasse, D ;
Joshi, MB ;
Harpole, D ;
Lancaster, JM ;
Berchuck, A ;
Olson, JA ;
Marks, JR ;
Dressman, HK ;
West, M ;
Nevins, JR .
NATURE, 2006, 439 (7074) :353-357
[7]   Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: A meta-analysis [J].
Bristow, RE ;
Tomacruz, RS ;
Armstrong, DK ;
Trimble, EL ;
Montz, FJ .
JOURNAL OF CLINICAL ONCOLOGY, 2002, 20 (05) :1248-1259
[8]   Cancer of the ovary [J].
Cannistra, SA .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 351 (24) :2519-2529
[9]   Cross-platform comparison and visualisation of gene expression data using co-inertia analysis -: art. no. 59 [J].
Culhane, AC ;
Perrière, G ;
Higgins, DG .
BMC BIOINFORMATICS, 2003, 4 (1)
[10]   RETRACTED: An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer (Retracted article. See vol. 30, pg. 678, 2012) [J].
Dressman, Holly K. ;
Berchuck, Andrew ;
Chan, Gina ;
Zhai, Jun ;
Bild, Andrea ;
Sayer, Robyn ;
Cragun, Janiel ;
Clarke, Jennifer ;
Whitaker, Regina S. ;
Li, LiHua ;
Gray, Jonathan ;
Marks, Jeffrey ;
Ginsburg, Geoffrey S. ;
Potti, Anil ;
West, Mike ;
Nevins, Joseph R. ;
Lancaster, Johnathan M. .
JOURNAL OF CLINICAL ONCOLOGY, 2007, 25 (05) :517-525