Bifurcation Analysis of the γ-Ricker Population Model Using the Lambert W Function

被引:12
作者
Rocha, J. Leonel [1 ]
Taha, Abdel-Kaddous [2 ]
机构
[1] Polytech Inst Lisbon, ISEL Engn Super Inst Lisbon, CEAUL, ADM, Rua Conselheiro Emidio Navarro 1, P-1959007 Lisbon, Portugal
[2] Fed Univ Toulouse Midi Pyrenees, INSA, 135 Ave Rangueil, F-31077 Toulouse, France
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2020年 / 30卷 / 07期
关键词
gamma-Ricker population model; Lambert W function; Allee effect bifurcation; fold and flip bifurcations; snapback repeller bifurcation; big bang bifurcation; BIG-BANG BIFURCATIONS; ALLEE;
D O I
10.1142/S0218127420501084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we present the dynamical study and the bifurcation structures of the gamma-Ricker population model. Resorting to the Lambert W function, the analytical solutions of the positive fixed point equation for the gamma-Ricker population model are explicitly presented and conditions for the existence and stability of these fixed points are established. The main focus of this work is the definition and characterization of the Allee effect bifurcation for the gamma-Ricker population model, which is not a pitchfork bifurcation. Consequently, we prove that the phenomenon of Allee effect for the gamma-Ricker population model is associated with the asymptotic behavior of the Lambert W function in a neighborhood of zero. The theoretical results describe the global and local bifurcations of the gamma-Ricker population model, using the Lambert W function in the presence and absence of the Allee effect. The Allee effect, snapback repeller and big bang bifurcations are investigated in the parameters space considered. Numerical studies are included.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] EOQ extensions exploiting the Lambert W function
    Warburton, Roger D. H.
    EUROPEAN JOURNAL OF INDUSTRIAL ENGINEERING, 2009, 3 (01) : 45 - 69
  • [32] The extension of a functional equation of the Lambert W function
    Mezo, Istvan
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2022, 33 (09) : 761 - 765
  • [33] The Golden Ratio, Factorials, and the Lambert W Function
    Petojevic, Aleksandar
    Ranitovic, Marjana Gorjanac
    Rastovac, Dragan
    Mandic, Milinko
    JOURNAL OF INTEGER SEQUENCES, 2024, 27 (05) : 1 - 11
  • [34] Verified computation for the matrix Lambert W function
    Miyajima, Shinya
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 362
  • [35] The Lambert W Function: A Newcomer in the Cosmology Class?
    Saha, Subhajit
    Bamba, Kazuharu
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2020, 75 (01): : 23 - 27
  • [36] Heat Capacity Calculation of Some Semiconductor Compounds Using Lambert W Function
    Olfa Boussaid
    Chokri Hadj Belgacem
    Mustapha Fnaiech
    Silicon, 2019, 11 : 1673 - 1676
  • [37] Heat Capacity Calculation of Some Semiconductor Compounds Using Lambert W Function
    Boussaid, Olfa
    Belgacem, Chokri Hadj
    Fnaiech, Mustapha
    SILICON, 2019, 11 (03) : 1673 - 1676
  • [38] New analytical results in solid state physics using the Lambert W function
    Houari, Ahmed
    EUROPEAN JOURNAL OF PHYSICS, 2023, 44 (06)
  • [39] Complement to method of analysis of time delay systems via the Lambert W function
    Ivanoviene, Irma
    Rimas, Jonas
    AUTOMATICA, 2015, 54 : 25 - 28
  • [40] Progress curve analysis for enzyme and microbial kinetic reactions using explicit solutions based on the Lambert W function
    Goudar, CT
    Harris, SK
    McInerney, MJ
    Suflita, JM
    JOURNAL OF MICROBIOLOGICAL METHODS, 2004, 59 (03) : 317 - 326