Bifurcation Analysis of the γ-Ricker Population Model Using the Lambert W Function

被引:12
|
作者
Rocha, J. Leonel [1 ]
Taha, Abdel-Kaddous [2 ]
机构
[1] Polytech Inst Lisbon, ISEL Engn Super Inst Lisbon, CEAUL, ADM, Rua Conselheiro Emidio Navarro 1, P-1959007 Lisbon, Portugal
[2] Fed Univ Toulouse Midi Pyrenees, INSA, 135 Ave Rangueil, F-31077 Toulouse, France
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2020年 / 30卷 / 07期
关键词
gamma-Ricker population model; Lambert W function; Allee effect bifurcation; fold and flip bifurcations; snapback repeller bifurcation; big bang bifurcation; BIG-BANG BIFURCATIONS; ALLEE;
D O I
10.1142/S0218127420501084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we present the dynamical study and the bifurcation structures of the gamma-Ricker population model. Resorting to the Lambert W function, the analytical solutions of the positive fixed point equation for the gamma-Ricker population model are explicitly presented and conditions for the existence and stability of these fixed points are established. The main focus of this work is the definition and characterization of the Allee effect bifurcation for the gamma-Ricker population model, which is not a pitchfork bifurcation. Consequently, we prove that the phenomenon of Allee effect for the gamma-Ricker population model is associated with the asymptotic behavior of the Lambert W function in a neighborhood of zero. The theoretical results describe the global and local bifurcations of the gamma-Ricker population model, using the Lambert W function in the presence and absence of the Allee effect. The Allee effect, snapback repeller and big bang bifurcations are investigated in the parameters space considered. Numerical studies are included.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Analytical approximations to the Lambert W function
    Wu, Baisheng
    Zhou, Yixin
    Lim, C. W.
    Zhong, Huixiang
    APPLIED MATHEMATICAL MODELLING, 2022, 104 : 114 - 121
  • [22] Lambert W function for applications in physics
    Veberic, Darko
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (12) : 2622 - 2628
  • [23] Two iterative approaches using the Lambert W function for solving the Mann model in PEMFC: A short communication
    Calasan, Martin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 119 : 173 - 177
  • [24] Parameters identification of PV model using improved slime mould optimizer and Lambert W-function
    El-Fergany, Attia A.
    ENERGY REPORTS, 2021, 7 : 875 - 887
  • [25] Photovoltaic system using Lambert W function-based technique
    Tripathy, Meetarani
    Kumar, Manish
    Sadhu, P. K.
    SOLAR ENERGY, 2017, 158 : 432 - 439
  • [26] Maximum Allowable Delay Bound Estimation Using Lambert W Function
    Alfergani, Asma
    Khalil, Ashraf
    Rajab, Zakariya
    Zuheir, Mohammad
    Asheibi, Ali
    Khan, Sheroz
    2017 IEEE JORDAN CONFERENCE ON APPLIED ELECTRICAL ENGINEERING AND COMPUTING TECHNOLOGIES (AEECT), 2017,
  • [27] Solar cell array parameters using Lambert W-function
    Jain, A
    Sharma, S
    Kapoor, A
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (01) : 25 - 31
  • [28] Analysis of projectile motion with quadratic air resistance from a nonzero height using the Lambert W function
    Belgacem, Chokri Hadj
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2017, 11 (02): : 328 - 331
  • [29] Analytical model of mismatched photovoltaic fields by means of Lambert W-function
    Petrone, G.
    Spagnuojo, G.
    Vitelli, M.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (18) : 1652 - 1657
  • [30] The Lambert W function in ecological and evolutionary models
    Lehtonen, Jussi
    METHODS IN ECOLOGY AND EVOLUTION, 2016, 7 (09): : 1110 - 1118