Speech enhancement method based on feature compensation gain for effective speech recognition in noisy environments

被引:0
|
作者
Bae, Ara [1 ]
Kim, Wooil [1 ]
机构
[1] Incheon Natl Univ, Dept Comp Sci & Engn, 119 Acad Ro, Incheon 22012, South Korea
来源
关键词
Speech enhancement; Feature compensation gain; Variational model composition; Speech recognition; Noisy environment;
D O I
10.7776/ASK.2019.38.1.051
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper proposes a speech enhancement method utilizing the feature compensation gain for robust speech recognition performances in noisy environments. In this paper we propose a speech enhancement method utilizing the feature compensation gain which is obtained from the PCGMM (Parallel Combined Gaussian Mixture Model)-based feature compensation method employing variational model composition. The experimental results show that the proposed method significantly outperforms the conventional front-end algorithms and our previous research over various background noise types and SNR (Signal to Noise Ratio) conditions in mismatched ASR (Automatic Speech Recognition) system condition. The computation complexity is significantly reduced by employing the noise model selection technique with maintaining the speech recognition performance at a similar level.
引用
收藏
页码:51 / 55
页数:5
相关论文
共 50 条
  • [1] AN EFFECTIVE MISSING FEATURE COMPENSATION METHOD FOR SPEECH RECOGNITION AT NOISY ENVIRONMENT
    Hu, Xu-Yan
    Zou, Yue-Xian
    Shi, Wei
    2014 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (CHINASIP), 2014, : 133 - 137
  • [2] Speech enhancement applied to speech recognition in noisy environments
    Xu, Y.F., 2001, Press of Tsinghua University (41):
  • [3] Noisy speech recognition based on speech enhancement
    Wang, Xia
    Tang, Hongmei
    Zhao, Xiaoqun
    SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 3, PROCEEDINGS, 2007, : 713 - +
  • [4] Word graph based feature enhancement for noisy speech recognition
    Yan, Zhi-Jie
    Soong, Frank K.
    Wang, Ren-Hua
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PTS 1-3, 2007, : 373 - +
  • [5] Model-based feature enhancement for noisy speech recognition
    Couvreur, C
    Van hamme, H
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 1719 - 1722
  • [6] Selective Acoustic Feature Enhancement for Speech Emotion Recognition With Noisy Speech
    Leem, Seong-Gyun
    Fulford, Daniel
    Onnela, Jukka-Pekka
    Gard, David
    Busso, Carlos
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 917 - 929
  • [7] Speech enhancement strategy for speech recognition microcontroller under noisy environments
    Chan, Kit Yan
    Nordholm, Sven
    Yiu, Ka Fai Cedric
    Togneri, Roberto
    NEUROCOMPUTING, 2013, 118 : 279 - 288
  • [8] A robust speech enhancement method in noisy environments
    Abajaddi, Nesrine
    Mounir, Badia
    Elfahm, Youssef
    Farchi, Abdelmajid
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2023, 14 (09) : 973 - 983
  • [9] An effective cluster-based model for robust speech detection and speech recognition in noisy environments
    Gorriz, J. M.
    Ramirez, J.
    Segura, J. C.
    Puntonet, C. G.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2006, 120 (01): : 470 - 481
  • [10] An effective cluster-based model for robust speech detection and speech recognition in noisy environments
    Górriz, J.M.
    Ramírez, J.
    Segura, J.C.
    Puntonet, C.G.
    Journal of the Acoustical Society of America, 2006, 120 (01): : 470 - 481