EQUIVARIANT K-THEORY AND THE CHERN CHARACTER FOR DISCRETE GROUPS

被引:0
|
作者
Park, Efton [1 ]
机构
[1] Texas Christian Univ, Dept Math, Ft Worth, TX 76129 USA
关键词
Equivariant K-theory; finite group actions; crossed products;
D O I
10.1090/S0002-9939-2011-10912-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a compact Hausdorff space, let Gamma be a discrete group that acts continuously on X from the right, define (X) over tilde = {(x, gamma) is an element of X x Gamma : x center dot gamma = x}, and let Gamma act on (X) over tilde via the formula (x, gamma) center dot alpha = (x center dot alpha, alpha(-1)gamma alpha). Results of P. Baum and A. Connes, along with facts about the Chern character, imply that K-Gamma(i)(X) and K-i((X) over tilde/Gamma) are isomorphic up to torsion for i = 0, 1. In this paper, we present an example where the groups K-Gamma(i)(X) and K-i((X) over tilde/Gamma) are not isomorphic.
引用
收藏
页码:745 / 747
页数:3
相关论文
共 50 条
  • [31] Equivariant formality in K-theory
    Fok, Chi-Kwong
    NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 315 - 327
  • [32] EQUIVARIANT K-THEORY OF GRASSMANNIANS
    Pechenik, Oliver
    Yong, Alexander
    FORUM OF MATHEMATICS PI, 2017, 5
  • [33] Rigidity for equivariant K-theory
    Yagunov, Serge
    Ostvaer, Paul Arne
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (23-24) : 1403 - 1407
  • [34] LOWER EQUIVARIANT K-THEORY
    SVENSSON, JA
    MATHEMATICA SCANDINAVICA, 1987, 60 (02) : 179 - 201
  • [35] Equivariant representable K-theory
    Emerson, Heath
    Meyer, Ralf
    JOURNAL OF TOPOLOGY, 2009, 2 (01) : 123 - 156
  • [36] THE SPECTRUM OF EQUIVARIANT K-THEORY
    BOJANOWSKA, A
    MATHEMATISCHE ZEITSCHRIFT, 1983, 183 (01) : 1 - 19
  • [37] EQUIVARIANT K-THEORY FOR CURVES
    ELLINGSRUD, G
    LONSTED, K
    DUKE MATHEMATICAL JOURNAL, 1984, 51 (01) : 37 - 46
  • [38] EQUIVARIANT K-THEORY OF RINGS
    DAVYDOV, AA
    RUSSIAN MATHEMATICAL SURVEYS, 1991, 46 (04) : 167 - 168
  • [39] EQUIVARIANT CONNECTIVE K-THEORY
    Karpenko, Nikita A.
    Merkurjev, Alexander S.
    JOURNAL OF ALGEBRAIC GEOMETRY, 2022, 31 (01) : 181 - 204