RBF neural network based on q-Gaussian function in function approximation

被引:5
作者
Zhao, Wei [1 ]
San, Ye [1 ]
机构
[1] Harbin Inst Technol, Control & Simulat Ctr, Harbin 150001, Peoples R China
来源
FRONTIERS OF COMPUTER SCIENCE IN CHINA | 2011年 / 5卷 / 04期
基金
中国国家自然科学基金;
关键词
radial basis function (RBF) neural network; q-Gaussian function; particle swarm optimization algorithm; function approximation;
D O I
10.1007/s11704-011-1041-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To enhance the generalization performance of radial basis function (RBF) neural networks, an RBF neural network based on a q-Gaussian function is proposed. A q-Gaussian function is chosen as the radial basis function of the RBF neural network, and a particle swarm optimization algorithm is employed to select the parameters of the network. The non-extensive entropic index q is encoded in the particle and adjusted adaptively in the evolutionary process of population. Simulation results of the function approximation indicate that an RBF neural network based on q-Gaussian function achieves the best generalization performance.
引用
收藏
页码:381 / 386
页数:6
相关论文
共 13 条
[1]   Generalized multiscale radial basis function networks [J].
Billings, Stephen A. ;
Wei, Hua-Liang ;
Balikhin, Michael A. .
NEURAL NETWORKS, 2007, 20 (10) :1081-1094
[2]   Cloud basis function neural network: A modified RBF network architecture for holistic facial expression recognition [J].
De Silva, Chathura R. ;
Ranganath, Surendra ;
De Silva, Liyanage C. .
PATTERN RECOGNITION, 2008, 41 (04) :1241-1253
[3]   An enhanced swarm intelligence clustering-based RBFNN classifier and its application in deep Web sources classification [J].
Feng, Yong ;
Wu, Zhongfu ;
Zhong, Jiang ;
Ye, Chunxiao ;
Wu, Kaigui .
FRONTIERS OF COMPUTER SCIENCE IN CHINA, 2010, 4 (04) :560-570
[4]   Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis function neural network [J].
Gholizadeh, S. ;
Salajegheh, E. ;
Torkzadeh, P. .
JOURNAL OF SOUND AND VIBRATION, 2008, 312 (1-2) :316-331
[5]   The effect of different basis functions on a radial basis function network for time series prediction: A comparative study [J].
Harpham, C. ;
Dawson, C. W. .
NEUROCOMPUTING, 2006, 69 (16-18) :2161-2170
[6]   On the construction and training of reformulated radial basis function neural networks [J].
Karayiannis, NB ;
Randolph-Gips, MM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (04) :835-846
[7]   Training reformulated radial basis function neural networks capable of identifying uncertainty in data classification [J].
Karayiannis, Nicolaos B. ;
Xiong, Yaohua .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (05) :1222-1234
[8]  
KONG LX, 2007, J HARBIN I TECHNOLOG, V14, P263
[9]   Fast Learning in Networks of Locally-Tuned Processing Units [J].
Moody, John ;
Darken, Christian J. .
NEURAL COMPUTATION, 1989, 1 (02) :281-294
[10]   Monitoring of particle swarm optimization [J].
Shi, Yuhui ;
Eberhart, Russ .
FRONTIERS OF COMPUTER SCIENCE IN CHINA, 2009, 3 (01) :31-37