Ordered groups, eigenvalues, knots, surgery and L-spaces

被引:24
作者
Clay, Adam [1 ]
Rolfsen, Dale [2 ,3 ]
机构
[1] Univ Quebec, Dept Math, Montreal, PQ H3C 3P8, Canada
[2] Univ British Columbia, Pacific Inst Math Sci, Vancouver, BC V6T 1Z2, Canada
[3] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
FLOER HOMOLOGY; 3-MANIFOLDS;
D O I
10.1017/S0305004111000557
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a necessary condition that an automorphism of a nontrivial finitely generated bi-orderable group can preserve a bi-ordering: at least one of its eigenvalues, suitably defined, must be real and positive. Applications are given to knot theory, spaces which fibre over the circle and to the Heegaard-Floer homology of surgery manifolds. In particular, we show that if a nontrivial fibred knot has bi-orderable knot group, then its Alexander polynomial has a positive real root. This implies that many specific knot groups are not bi-orderable. We also show that if the group of a nontrivial knot is bi-orderable, surgery on the knot cannot produce an L-space, as defined by Ozsvath and Szabo.
引用
收藏
页码:115 / 129
页数:15
相关论文
共 28 条
[1]  
[Anonymous], THESIS
[2]   SPECULATIONS CONCERNING THE RANGE OF MAHLERS MEASURE [J].
BOYD, DW .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1981, 24 (04) :453-469
[3]   Orderable 3-manifold groups [J].
Boyer, S ;
Rolfsen, D ;
Wiest, B .
ANNALES DE L INSTITUT FOURIER, 2005, 55 (01) :243-+
[4]   Laminations and groups of homeomorphisms of the circle [J].
Calegari, D ;
Dunfield, NM .
INVENTIONES MATHEMATICAE, 2003, 152 (01) :149-204
[5]  
Calegari D, 2007, OXFORD MATH MONOGRAP
[6]   BRAID-GROUPS AND LEFT DISTRIBUTIVE OPERATIONS [J].
DEHORNOY, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 345 (01) :115-150
[7]  
Dehornoy P., 2008, SURVEYS MONOGRAPHS, V148
[8]   CONSTRUCTING LENS SPACES BY SURGERY ON KNOTS [J].
FINTUSHEL, R ;
STERN, RJ .
MATHEMATISCHE ZEITSCHRIFT, 1980, 175 (01) :33-51
[9]  
Ghys E., 2001, Enseignement Mathematique, V47, P329
[10]  
Gruenberg K. W., 1976, CBMS REG C SER MATH, V25