Lie triple ideals and Lie triple epimorphisms on Jordan and Jordan-Banach algebras

被引:3
|
作者
Bresar, M
Cabrera, M
Fosner, M
Villena, AR
机构
[1] Univ Maribor, PEF, Dept Math, Maribor 2000, Slovenia
[2] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
[3] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
关键词
D O I
10.4064/sm169-3-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A linear subspace M of a Jordan algebra J is said to be a Lie triple ideal of J if [M, J, J] subset of M, where [(.), (.), (.)] denotes the associator. We show that every Lie triple ideal M of a nondegenerate Jordan algebra J is either contained in the center of J or contains the nonzero Lie triple ideal [U, J, J], where U is the ideal of J generated by [M, M, M]. Let H be a Jordan algebra, let J be a prime nondegenerate Jordan algebra with extended centroid C and unital central closure (J) over cap, and let Phi : H -> J be a Lie triple epimorphism (i.e. a linear surjection preserving associators). Assume that deg(J) >= 12. Then we show that there exist a homomorphism Psi : H -> (J) over cap and a linear map tau : H -> C satisfying tau([H, H, H]) = 0 such that either Phi = Psi + tau or Phi = -Psi + tau. Using the preceding results we show that the separating space of a Lie triple epimorphism between Jordan-Banach algebras H and J lies in the center modulo the radical of J.
引用
收藏
页码:207 / 228
页数:22
相关论文
共 50 条
  • [1] LIE IDEALS AND JORDAN TRIPLE (α, β) IN RINGS
    Rehman, Nadeem Ur
    Sogutcu, Emine Koc
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (01): : 528 - 539
  • [2] Lie Ideals and Jordan Triple Derivations in Rings
    Hongan, Motoshi
    Rehman, Nadeem Ur
    Al-Omary, Radwan Mohammed
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2011, 125 : 147 - 156
  • [3] Inessential ideals in Jordan-Banach algebras
    Wilkins, TJD
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 : 73 - 81
  • [4] Lie triple and Jordan derivable mappings on nest algebras
    Li, Changjing
    Fang, Xiaochun
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (05): : 653 - 666
  • [5] CONSTRUCTION OF LIE ALGEBRAS FROM JORDAN TRIPLE SYSTEMS
    MEYBERG, K
    MANUSCRIPTA MATHEMATICA, 1970, 3 (02) : 115 - &
  • [6] LIE AND JORDAN TRIPLE SYSTEMS
    JACOBSON, N
    AMERICAN JOURNAL OF MATHEMATICS, 1949, 71 (01) : 149 - 170
  • [7] GENERALIZATION OF TITS CONSTRUCTION OF LIE-ALGEBRAS BY JORDAN ALGEBRAS TO JORDAN TRIPLE SYSTEMS
    HIRZEBRUCH, U
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1978, 81 (04): : 456 - 459
  • [8] On δ-Jordan Lie triple systems
    Ma, Lili
    Chen, Liangyun
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (04): : 731 - 751
  • [9] Lie and Jordan Ideals in Reflexive Algebras
    Fangyan Lu
    Xiuping Yu
    Integral Equations and Operator Theory, 2007, 59 : 189 - 206
  • [10] Lie and jordan ideals in reflexive algebras
    Lu, Fangyan
    Yu, Xiuping
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2007, 59 (02) : 189 - 206