To stratify or not to stratify: power considerations for population-based genome-wide association studies of quantitative traits

被引:26
|
作者
Behrens, Gundula [1 ]
Winkler, Thomas W. [1 ]
Gorski, Mathias [1 ,2 ]
Leitzmann, Michael F. [1 ]
Heid, Iris M. [1 ,2 ]
机构
[1] Univ Regensburg, Dept Epidemiol & Prevent Med, Med Ctr, D-93053 Regensburg, Germany
[2] German Res Ctr Environm Hlth, Inst Epidemiol, Helmholtz Zentrum Munchen, Neuherberg, Germany
关键词
genome-wide association; power; stratified analysis; sex-specific; quantitative trait; GENE-ENVIRONMENT INTERACTION; SAMPLE-SIZE REQUIREMENTS; G X E; STATISTICAL POWER; METAANALYSIS; DETECT; TESTS; DISEASE; SNP;
D O I
10.1002/gepi.20637
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Meta-analyses of genome-wide association studies require numerous study partners to conduct pre-defined analyses and thus simple but efficient analyses plans. Potential differences between strata (e.g. men and women) are usually ignored, but often the question arises whether stratified analyses help to unravel the genetics of a phenotype or if they unnecessarily increase the burden of analyses. To decide whether to stratify or not to stratify, we compare general analytical power computations for the overall analysis with those of stratified analyses considering quantitative trait analyses and two strata. We also relate the stratification problem to interaction modeling and exemplify theoretical considerations on obesity and renal function genetics. We demonstrate that the overall analyses have better power compared to stratified analyses as long as the signals are pronounced in both strata with consistent effect direction. Stratified analyses are advantageous in the case of signals with zero (or very small) effect in one stratum and for signals with opposite effect direction in the two strata. Applying the joint test for a main SNP effect and SNP-stratum interaction beats both overall and stratified analyses regarding power, but involves more complex models. In summary, we recommend to employ stratified analyses or the joint test to better understand the potential of strata-specific signals with opposite effect direction. Only after systematic genome-wide searches for opposite effect direction loci have been conducted, we will know if such signals exist and to what extent stratified analyses can depict loci that otherwise are missed. Genet. Epidemiol. 2011. (C) 2011 Wiley Periodicals, Inc.35:867-879, 2011
引用
收藏
页码:867 / 879
页数:13
相关论文
共 50 条
  • [41] Implementing meta-analysis from genome-wide association studies for pork quality traits
    Bernal Rubio, Y. L.
    Gualdron Duarte, J. L.
    Bates, R. O.
    Ernst, C. W.
    Nonneman, D.
    Rohrer, G. A.
    King, D. A.
    Shackelford, S. D.
    Wheeler, T. L.
    Cantet, R. J. C.
    Steibel, J. P.
    JOURNAL OF ANIMAL SCIENCE, 2015, 93 (12) : 5607 - 5617
  • [42] Genome-Wide Association Studies of Asthma in Population-Based Cohorts Confirm Known and Suggested Loci and Identify an Additional Association near HLA
    Ramasamy, Adaikalavan
    Kuokkanen, Mikko
    Vedantam, Sailaja
    Gajdos, Zofia K.
    Alves, Alexessander Couto
    Lyon, Helen N.
    Ferreira, Manuel A. R.
    Strachan, David P.
    Zhao, Jing Hua
    Abramson, Michael J.
    Brown, Matthew A.
    Coin, Lachlan
    Dharmage, Shyamali C.
    Duffy, David L.
    Haahtela, Tari
    Heath, Andrew C.
    Janson, Christer
    Kahonen, Mika
    Khaw, Kay-Tee
    Laitinen, Jaana
    Le Souef, Peter
    Lehtimaki, Terho
    Madden, Pamela A. F.
    Marks, Guy B.
    Martin, Nicholas G.
    Matheson, Melanie C.
    Palmer, Cameron D.
    Palotie, Aarno
    Pouta, Anneli
    Robertson, Colin F.
    Viikari, Jorma
    Widen, Elisabeth
    Wjst, Matthias
    Jarvis, Deborah L.
    Montgomery, Grant W.
    Thompson, Philip J.
    Wareham, Nick
    Eriksson, Johan
    Jousilahti, Pekka
    Laitinen, Tarja
    Pekkanen, Juha
    Raitakari, Olli T.
    O'Connor, George T.
    Salomaa, Veikko
    Jarvelin, Marjo-Riitta
    Hirschhorn, Joel N.
    PLOS ONE, 2012, 7 (09):
  • [43] Genome-wide association studies in mice
    Flint, Jonathan
    Eskin, Eleazar
    NATURE REVIEWS GENETICS, 2012, 13 (11) : 807 - 817
  • [44] Successes of Genome-wide Association Studies
    Klein, Robert J.
    Xu, Xing
    Mukherjee, Semanti
    Willis, Jason
    Hayes, James
    CELL, 2010, 142 (03) : 350 - 351
  • [45] Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals
    Chen, Wei
    Wang, Wensheng
    Peng, Meng
    Gong, Liang
    Gao, Yanqiang
    Wan, Jian
    Wang, Shouchuang
    Shi, Lei
    Zhou, Bin
    Li, Zongmei
    Peng, Xiaoxi
    Yang, Chenkun
    Qu, Lianghuan
    Liu, Xianqing
    Luo, Jie
    NATURE COMMUNICATIONS, 2016, 7
  • [46] Evaluating Strategies for Marker Ranking in Genome-wide Association Studies of Complex Traits
    Scherag, A.
    Hebebrand, J.
    Wichmann, H. E.
    Jockel, K. H.
    METHODS OF INFORMATION IN MEDICINE, 2010, 49 (06) : 632 - 640
  • [47] Genome-wide Association Studies for Female Fertility Traits in Chinese and Nordic Holsteins
    Liu, Aoxing
    Wang, Yachun
    Sahana, Goutam
    Zhang, Qin
    Liu, Lin
    Lund, Mogens Sando
    Su, Guosheng
    SCIENTIFIC REPORTS, 2017, 7
  • [48] Genome-Wide Association Study of Inattention and Hyperactivity-Impulsivity Measured as Quantitative Traits
    Ebejer, Jane L.
    Duffy, David L.
    van der Werf, Julius
    Wright, Margaret J.
    Montgomery, Grant
    Gillespie, Nathan A.
    Hickie, Ian B.
    Martin, Nicholas G.
    Medland, Sarah E.
    TWIN RESEARCH AND HUMAN GENETICS, 2013, 16 (02) : 560 - 574
  • [49] Genome-wide association study of primary open angle glaucoma risk and quantitative traits
    Gibson, Jane
    Griffiths, Helen
    De Salvo, Gabriella
    Cole, Mick
    Jacob, Aby
    MacLeod, Alex
    Yang, Yit
    Menon, Geeta
    Cree, Angela
    Ennis, Sarah
    Lotery, Andrew
    MOLECULAR VISION, 2012, 18 (115): : 1083 - 1092
  • [50] Genome-wide association studies: a primer
    Corvin, A.
    Craddock, N.
    Sullivan, P. F.
    PSYCHOLOGICAL MEDICINE, 2010, 40 (07) : 1063 - 1077