To stratify or not to stratify: power considerations for population-based genome-wide association studies of quantitative traits

被引:26
|
作者
Behrens, Gundula [1 ]
Winkler, Thomas W. [1 ]
Gorski, Mathias [1 ,2 ]
Leitzmann, Michael F. [1 ]
Heid, Iris M. [1 ,2 ]
机构
[1] Univ Regensburg, Dept Epidemiol & Prevent Med, Med Ctr, D-93053 Regensburg, Germany
[2] German Res Ctr Environm Hlth, Inst Epidemiol, Helmholtz Zentrum Munchen, Neuherberg, Germany
关键词
genome-wide association; power; stratified analysis; sex-specific; quantitative trait; GENE-ENVIRONMENT INTERACTION; SAMPLE-SIZE REQUIREMENTS; G X E; STATISTICAL POWER; METAANALYSIS; DETECT; TESTS; DISEASE; SNP;
D O I
10.1002/gepi.20637
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Meta-analyses of genome-wide association studies require numerous study partners to conduct pre-defined analyses and thus simple but efficient analyses plans. Potential differences between strata (e.g. men and women) are usually ignored, but often the question arises whether stratified analyses help to unravel the genetics of a phenotype or if they unnecessarily increase the burden of analyses. To decide whether to stratify or not to stratify, we compare general analytical power computations for the overall analysis with those of stratified analyses considering quantitative trait analyses and two strata. We also relate the stratification problem to interaction modeling and exemplify theoretical considerations on obesity and renal function genetics. We demonstrate that the overall analyses have better power compared to stratified analyses as long as the signals are pronounced in both strata with consistent effect direction. Stratified analyses are advantageous in the case of signals with zero (or very small) effect in one stratum and for signals with opposite effect direction in the two strata. Applying the joint test for a main SNP effect and SNP-stratum interaction beats both overall and stratified analyses regarding power, but involves more complex models. In summary, we recommend to employ stratified analyses or the joint test to better understand the potential of strata-specific signals with opposite effect direction. Only after systematic genome-wide searches for opposite effect direction loci have been conducted, we will know if such signals exist and to what extent stratified analyses can depict loci that otherwise are missed. Genet. Epidemiol. 2011. (C) 2011 Wiley Periodicals, Inc.35:867-879, 2011
引用
收藏
页码:867 / 879
页数:13
相关论文
共 50 条
  • [31] Meta-analysis of genome-wide association studies for personality
    de Moor, M. H. M.
    Costa, P. T.
    Terracciano, A.
    Krueger, R. F.
    de Geus, E. J. C.
    Toshiko, T.
    Penninx, B. W. J. H.
    Esko, T.
    Madden, P. A. F.
    Derringer, J.
    Amin, N.
    Willemsen, G.
    Hottenga, J-J
    Distel, M. A.
    Uda, M.
    Sanna, S.
    Spinhoven, P.
    Hartman, C. A.
    Sullivan, P.
    Realo, A.
    Allik, J.
    Heath, A. C.
    Pergadia, M. L.
    Agrawal, A.
    Lin, P.
    Grucza, R.
    Nutile, T.
    Ciullo, M.
    Rujescu, D.
    Giegling, I.
    Konte, B.
    Widen, E.
    Cousminer, D. L.
    Eriksson, J. G.
    Palotie, A.
    Peltonen, L.
    Luciano, M.
    Tenesa, A.
    Davies, G.
    Lopez, L. M.
    Hansell, N. K.
    Medland, S. E.
    Ferrucci, L.
    Schlessinger, D.
    Montgomery, G. W.
    Wright, M. J.
    Aulchenko, Y. S.
    Janssens, A. C. J. W.
    Oostra, B. A.
    Metspalu, A.
    MOLECULAR PSYCHIATRY, 2012, 17 (03) : 337 - 349
  • [32] Power of genome-wide association studies in the presence of interacting loci
    Pickrell, Joseph
    Clerget-Darpoux, Francoise
    Bourgain, Catherine
    GENETIC EPIDEMIOLOGY, 2007, 31 (07) : 748 - 762
  • [33] The power of genetic diversity in genome-wide association studies of lipids
    Graham, Sarah E.
    Clarke, Shoa L.
    Wu, Kuan-Han H.
    Kanoni, Stavroula
    Zajac, Greg J. M.
    Ramdas, Shweta
    Surakka, Ida
    Ntalla, Ioanna
    Vedantam, Sailaja
    Winkler, Thomas W.
    Locke, Adam E.
    Marouli, Eirini
    Hwang, Mi Yeong
    Han, Sohee
    Narita, Akira
    Choudhury, Ananyo
    Bentley, Amy R.
    Ekoru, Kenneth
    Verma, Anurag
    Trivedi, Bhavi
    Martin, Hilary C.
    Hunt, Karen A.
    Hui, Qin
    Klarin, Derek
    Zhu, Xiang
    Thorleifsson, Gudmar
    Helgadottir, Anna
    Gudbjartsson, Daniel F.
    Holm, Hilma
    Olafsson, Isleifur
    Akiyama, Masato
    Sakaue, Saori
    Terao, Chikashi
    Kanai, Masahiro
    Zhou, Wei
    Brumpton, Ben M.
    Rasheed, Humaira
    Ruotsalainen, Sanni E.
    Havulinna, Aki S.
    Veturi, Yogasudha
    Feng, QiPing
    Rosenthal, Elisabeth A.
    Lingren, Todd
    Pacheco, Jennifer Allen
    Pendergrass, Sarah A.
    Haessler, Jeffrey
    Giulianini, Franco
    Bradford, Yuki
    Miller, Jason E.
    Campbell, Archie
    NATURE, 2021, 600 (7890) : 675 - +
  • [34] DINGO: increasing the power of locus discovery in maternal and fetal genome-wide association studies of perinatal traits
    Hwang, Liang-Dar
    Cuellar-Partida, Gabriel
    Yengo, Loic
    Zeng, Jian
    Toivonen, Jarkko
    Arvas, Mikko
    Beaumont, Robin N.
    Freathy, Rachel M.
    Moen, Gunn-Helen
    Warrington, Nicole M.
    Evans, David M.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [35] The Role of Family-Based Designs in Genome-Wide Association Studies
    Laird, Nan M.
    Lange, Christoph
    STATISTICAL SCIENCE, 2009, 24 (04) : 388 - 397
  • [36] Testing for Genetic Association in the Presence of Population Stratification in Genome-Wide Association Studies
    Wang, Kai
    GENETIC EPIDEMIOLOGY, 2009, 33 (07) : 637 - 645
  • [37] A Genome-wide Association Study of Periodontitis in a Japanese Population
    Shimizu, S.
    Momozawa, Y.
    Takahashi, A.
    Nagasawa, T.
    Ashikawa, K.
    Terada, Y.
    Izumi, Y.
    Kobayashi, H.
    Tsuji, M.
    Kubo, M.
    Furuichi, Y.
    JOURNAL OF DENTAL RESEARCH, 2015, 94 (04) : 555 - 561
  • [38] SNP Set Association Analysis for Genome-Wide Association Studies
    Cai, Min
    Dai, Hui
    Qiu, Yongyong
    Zhao, Yang
    Zhang, Ruyang
    Chu, Minjie
    Dai, Juncheng
    Hu, Zhibin
    Shen, Hongbing
    Chen, Feng
    PLOS ONE, 2013, 8 (05):
  • [39] Genome-wide gene-environment interactions on quantitative traits using family data
    Sitlani, Colleen M.
    Dupuis, Josee
    Rice, Kenneth M.
    Sun, Fangui
    Pitsillides, Achilleas N.
    Cupples, L. Adrienne
    Psaty, Bruce M.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2016, 24 (07) : 1022 - 1028
  • [40] A Robust Method for Testing Association in Genome-Wide Association Studies
    Chen, Zhongxue
    Ng, Hon Keung Tony
    HUMAN HEREDITY, 2012, 73 (01) : 26 - 34