Liouville type theorem for quasi-linear elliptic inequality Δpu + uσ ≤ 0 on Riemannian manifolds

被引:1
作者
Huang, Jia-Cheng [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
关键词
Liouville type theorem; Quasi-linear elliptic inequality; NONNEGATIVE SOLUTIONS; POSITIVE SOLUTIONS; EQUATIONS;
D O I
10.1016/j.jmaa.2015.02.080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We studied the uniqueness of a nonnegative solution of the quasi-linear elliptic inequality Delta(p)u + u(sigma) <= 0 (*) on a connected geodesically complete Riemannian manifold X, where sigma is a parameter and Delta(p)u = div(vertical bar del u vertical bar(p-2)del u). We proved that if p> 1, sigma > p - 1, and for some x(0) is an element of X, lim(t -> 0+) inf t sigma/sigma-p+1 integral(infinity)(1) mu(B(x(0),r))/r((p+1)sigma-p+1/sigma-p+1 + pt/2(p-1)) dr < infinity, then inequality (*) has no nontrivial nonnegative weak solutions. We also studied the weighed case and the sharpness of the main result. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:12 / 31
页数:20
相关论文
共 23 条
[1]  
[Anonymous], 1999, Proc Steklov Inst Math
[2]  
[Anonymous], 2001, T MAT I STEKLOVA
[3]   Some Liouville theorems for quasilinear elliptic inequalities [J].
Caristi, G. ;
Mitidieri, E. ;
Pohozaev, S. I. .
DOKLADY MATHEMATICS, 2009, 79 (01) :118-124
[4]   Liouville Theorems for Some Nonlinear Inequalities [J].
Caristi, G. ;
D'Ambrosio, L. ;
Mitidieri, E. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 260 (01) :90-111
[5]  
Caristi G., 1997, ADV DIFFER EQU-NY, V2, P319
[6]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354
[7]   Representation formulae and inequalities for solutions of a class of second order partial differential equations [J].
D'Ambrosio, L ;
Mitidieri, E ;
Pohozaev, SI .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (02) :893-910
[8]   A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities [J].
D'Ambrosio, Lorenzo ;
Mitidieri, Enzo .
ADVANCES IN MATHEMATICS, 2010, 224 (03) :967-1020
[9]   Liouville theorems for anisotropic quasilinear inequalities [J].
D'Ambrosio, Lorenzo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (08) :2855-2869
[10]   GLOBAL AND LOCAL BEHAVIOR OF POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS [J].
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :525-598